Alzheimer's disease (AD) will soon become a public health crisis if left untreated. There are currently no proven treatments that delay the onset or prevent the progression of AD, but several promising candidates are being developed. During the development of these therapies, it will be very important to have biomarkers that can identify individuals at high risk for AD in order to target them for clinical trials, diseasemodifying therapies and to monitor therapy. Early onset dominantly inherited AD accounts for a very small proportion of all AD cases (<1%) but the neuropathologic hallmarks and clinical features of these individuals are similar to the more common late onset form of the disease. Because individuals possessing the various AD mutations are destined to develop AD, and families with a given mutation develop symptoms at a relatively predictable age, such individuals may be studied from a presymptomatic stage, providing a unique opportunity to investigate the very earliest manifestations of AD. We hypothesize that evaluation of fluid biomarkers in individuals with AD causing mutations will provide a means to detect the presence of AD neuropathology prior to symptoms and predict the time it will take to convert from cognitively normal to cognitively impaired. We believe this will be relevant to late-onset AD. Our AD biomarkers program has been in existence for nine years and operates as part of the Washington University Alzheimer's Disease Research Center. Our Biomarker Core currently facilitates and supports antecedent AD biomarker research by providing the necessary infrastructure for the collection, storage, and dissemination of samples for our own research and that of the greater AD scientific community. Thus we are highly qualified and in an excellent position to extend our mission to include samples obtained from individuals with dominantly inherited forms of the disease. We propose the following aims: 1) to establish a repository of fasted cerebrospinal fluid (CSF), serum and plasma samples from individuals (gene carriers and noncarriers;presymptomatic and symptomatic) who are biological adult children of a parent with a known causative mutation for AD (obtained uniformly from 7 participating sites using protocols from the Alzheimer's Disease Neuroimaging Initiative (ADNI);2) to obtain measures of CSF Ap^o, Ap^, total tau, and phosphorylated tau (ptau18i), and plasma Ap^o, Apx.4Q, ApM2, and Apx^,2 by ELISA-based methods;and 3) to coordinate the distribution of samples to qualified investigators for further biomarker discovery studies. To the extent that our biomarker findings can be extrapolated to the more common sporadic, late onset form of AD (as current data suggest), analysis of fluid and imaging biomarkers in dominantly inherited AD may have a profound impact on overall AD diagnosis and treatment.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AG032438-06
Application #
8600221
Study Section
Special Emphasis Panel (ZAG1-ZIJ-1)
Project Start
Project End
2014-06-30
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
6
Fiscal Year
2014
Total Cost
$45,642
Indirect Cost
$31,488
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Li, Zeran; Del-Aguila, Jorge L; Dube, Umber et al. (2018) Genetic variants associated with Alzheimer's disease confer different cerebral cortex cell-type population structure. Genome Med 10:43
Wang, Guoqiao; Berry, Scott; Xiong, Chengjie et al. (2018) A novel cognitive disease progression model for clinical trials in autosomal-dominant Alzheimer's disease. Stat Med 37:3047-3055
Vlassenko, Andrei G; Gordon, Brian A; Goyal, Manu S et al. (2018) Aerobic glycolysis and tau deposition in preclinical Alzheimer's disease. Neurobiol Aging 67:95-98
Gordon, Brian A; Blazey, Tyler M; Su, Yi et al. (2018) Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study. Lancet Neurol 17:241-250
Müller, Stephan; Preische, Oliver; Sohrabi, Hamid R et al. (2018) Relationship between physical activity, cognition, and Alzheimer pathology in autosomal dominant Alzheimer's disease. Alzheimers Dement 14:1427-1437
Villeneuve, Sylvia; Vogel, Jacob W; Gonneaud, Julie et al. (2018) Proximity to Parental Symptom Onset and Amyloid-? Burden in Sporadic Alzheimer Disease. JAMA Neurol 75:608-619
Lim, Yen Ying; Hassenstab, Jason; Goate, Alison et al. (2018) Effect of BDNFVal66Met on disease markers in dominantly inherited Alzheimer's disease. Ann Neurol 84:424-435
Su, Yi; Flores, Shaney; Hornbeck, Russ C et al. (2018) Utilizing the Centiloid scale in cross-sectional and longitudinal PiB PET studies. Neuroimage Clin 19:406-416
Cruchaga, Carlos; Del-Aguila, Jorge L; Saef, Benjamin et al. (2018) Polygenic risk score of sporadic late-onset Alzheimer's disease reveals a shared architecture with the familial and early-onset forms. Alzheimers Dement 14:205-214
Kinnunen, Kirsi M; Cash, David M; Poole, Teresa et al. (2018) Presymptomatic atrophy in autosomal dominant Alzheimer's disease: A serial magnetic resonance imaging study. Alzheimers Dement 14:43-53

Showing the most recent 10 out of 97 publications