The prevalence of food allergy has increased over the past 2 decades and food allergy now affects 3.5% :o 4% of the U.S. population. Peanut allergy, which is the single leading cause of severe and fatal foodnduced allergic reactions in the U.S., affects 1.5 million Americans and has doubled in prevalence in children less than 5 years of age in the period between 1997 and 2002. The reason for this increase in peanut allergy is not known, but it is clear that current strategies for preventing the development of peanut allergy and the severe allergic reactions following accidental ingestion of peanuts are not effective. Preclinical studies from our research group have demonstrated that peanut-allergic mice treated with a novel suppository vaccine, which contained a mixture of engineered, recombinant peanut proteins, Ara hi, 2, and 3, encapsulated within heat-killed, E coli used to generate these proteins (EMP-123), experienced markedly reduced allergic reactions when challenged and had significantly reduced peanut-specific serum IgE and splenocyte Th2 cytokine synthesis in vitro compared to sham-treated mice. The purpose of the proposed Consortium is two-fold: (1) to investigate the natural history of peanut allergy n atopic infants at high risk for the development of peanut allergy, delineate underlying immunologic parameters associated with the natural course of peanut sensitization, and identify biological markers that distinguish young children likely to develop symptomatic peanut allergy;and (2) to test a novel, prototype recombinant modified peanut protein vaccine, EMP-123, for the treatment of peanut allergy. During the Phase I &II clinical trial, immunologic parameters will be followed to delineate the mechanism underlying the response to the vaccine. A third project will utilize our murine model of peanut anaphylaxis and other models to delineate unique properties of the upper and lower Gl tract in establishing tolerance and reversing sensitization, including the role of innate immunity and regulatory cells, and to investigate uptake, processing and immunologic changes induced by EMP-123 in both peanut-sensitized and naive mice. The combined resources of this Consortium provide a unique opportunity to investigate basic immunologic mechanisms associated with the development of oral tolerance or food sensitization, and enable us to test a novel vaccine that has shown great promise in preclinical studies for the treatment of peanut allergy.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-WFD-I (M3))
Program Officer
Togias, Alkis
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Icahn School of Medicine at Mount Sinai
Schools of Medicine
New York
United States
Zip Code
Martin, Lisa J; He, Hua; Collins, Margaret H et al. (2018) Eosinophilic esophagitis (EoE) genetic susceptibility is mediated by synergistic interactions between EoE-specific and general atopic disease loci. J Allergy Clin Immunol 141:1690-1698
Berin, M Cecilia; Grishin, Alexander; Masilamani, Madhan et al. (2018) Egg-specific IgE and basophil activation but not egg-specific T-cell counts correlate with phenotypes of clinical egg allergy. J Allergy Clin Immunol 142:149-158.e8
Chehade, Mirna; Jones, Stacie M; Pesek, Robbie D et al. (2018) Phenotypic Characterization of Eosinophilic Esophagitis in a Large Multicenter Patient Population from the Consortium for Food Allergy Research. J Allergy Clin Immunol Pract 6:1534-1544.e5
Sampson, Hugh A; Berin, M Cecilia; Plaut, Marshall et al. (2018) The Consortium for Food Allergy Research (CoFAR) The First Generation. J Allergy Clin Immunol :
Chiang, David; Chen, Xintong; Jones, Stacie M et al. (2018) Single-cell profiling of peanut-responsive T cells in patients with peanut allergy reveals heterogeneous effector TH2 subsets. J Allergy Clin Immunol 141:2107-2120
Watson, C T; Cohain, A T; Griffin, R S et al. (2017) Integrative transcriptomic analysis reveals key drivers of acute peanut allergic reactions. Nat Commun 8:1943
Rochman, Mark; Travers, Jared; Miracle, Cora E et al. (2017) Profound loss of esophageal tissue differentiation in patients with eosinophilic esophagitis. J Allergy Clin Immunol 140:738-749.e3
Agashe, Charuta; Chiang, David; Grishin, Alexander et al. (2017) Impact of granulocyte contamination on PBMC integrity of shipped blood samples: Implications for multi-center studies monitoring regulatory T cells. J Immunol Methods 449:23-27
Schoos, Ann-Marie M; Kattan, Jacob D; Gimenez, Gustavo et al. (2016) Sensitization phenotypes based on protein groups and associations to allergic diseases in children. J Allergy Clin Immunol 137:1277-1280
Davis, Benjamin P; Epstein, Tolly; Kottyan, Leah et al. (2016) Association of eosinophilic esophagitis and hypertrophic cardiomyopathy. J Allergy Clin Immunol 137:934-6.e5

Showing the most recent 10 out of 71 publications