Core D is critical for the central tenet ofthe UCLA-CMCR, which is that classes of mitigators of radiation damage can be identified by their chemical structures and/or the biological pathways that they utilize. Core D has provided and will continue to provide the technological driving force behind the work ofthe projects in high-throughput screening (HTS) of small molecule libraries with the aim of discovering novel mitigators of radiation damage. Core D centralizes HTS in a state-of-the-art facility that has already proven its value to the UCLA-CMCR, with several families of lead compounds identified. Additionally, in order to deal with the data that has been generated and to provide it to the CMCR in a form in which it can be mined for structureactivity relationships and other relevant chemical and biological information Core D, through pilot research funding, has established a relationship with Collaborative Drug Discovery (CDD) to use its an industrialstrength database for these purposes. Access to this data is available to other CMCRs. Now that families of lead compounds have been identified, with more to come. Core D has been further expanded to include pharmaceutical chemists under Dr. Jung, who will play a central role in design and synthesis of analogues of active compounds to identify chemical structures responsible for activity, to improve their drug-like qualities, and their efficacy. This relationship also was initiated through pilot research funding. Finally, Core D provides proteomics primarily in the form of mass spectrometry to seek molecular signatures ofthe biological pathways utilized by effective mitigators so as to probe mechanism of action of these compounds.

Public Health Relevance

Core D brings technology that allows us to measure the effects of many thousands of compounds on the response of cells to radiation so as to discover novel agents;an industrial-strength database to house the data and explore it to derive information;the ability to chemically improve active compounds and investigate structure-activity relationships;and to define the pathways by which they bring about their effects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI067769-08
Application #
8380846
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
8
Fiscal Year
2012
Total Cost
$593,284
Indirect Cost
$197,437
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Woods, Kaley; Lee, Percy; Kaprealian, Tania et al. (2018) Cochlea-sparing acoustic neuroma treatment with 4? radiation therapy. Adv Radiat Oncol 3:100-107
Murray, David; Mirzayans, Razmik; McBride, William H (2018) Defenses against Pro-oxidant Forces - Maintenance of Cellular and Genomic Integrity and Longevity. Radiat Res 190:331-349
McBride, William H; Ganapathy, Ekambaram; Lee, Mi-Heon et al. (2017) A perspective on the impact of radiation therapy on the immune rheostat. Br J Radiol 90:20170272
Sasine, Joshua P; Yeo, Kelly T; Chute, John P (2017) Concise Review: Paracrine Functions of Vascular Niche Cells in Regulating Hematopoietic Stem Cell Fate. Stem Cells Transl Med 6:482-489
Graham, Nicholas A; Minasyan, Aspram; Lomova, Anastasia et al. (2017) Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures. Mol Syst Biol 13:914
Kar, Upendra K; Simonian, Margaret; Whitelegge, Julian P (2017) Integral membrane proteins: bottom-up, top-down and structural proteomics. Expert Rev Proteomics 14:715-723
Duhachek-Muggy, Sara; Bhat, Kruttika; Vlashi, Erina et al. (2017) Growth Differentiation Factor 11 does not Mitigate the Lethal Effects of Total-Abdominal Irradiation. Radiat Res 188:469-475
Himburg, Heather A; Doan, Phuong L; Quarmyne, Mamle et al. (2017) Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms. Nat Med 23:91-99
Micewicz, Ewa D; Kim, Kwanghee; Iwamoto, Keisuke S et al. (2017) 4-(Nitrophenylsulfonyl)piperazines mitigate radiation damage to multiple tissues. PLoS One 12:e0181577
Purbey, Prabhat K; Scumpia, Philip O; Kim, Peter J et al. (2017) Defined Sensing Mechanisms and Signaling Pathways Contribute to the Global Inflammatory Gene Expression Output Elicited by Ionizing Radiation. Immunity 47:421-434.e3

Showing the most recent 10 out of 93 publications