The Administrative Core monitors the University of Pittsburgh Cancer Institute CMCR website and distributes information with three different firewall levels: First, to investigators within the University of Pittsburgh CMCR, a second level to all CMCR Programs throughout eight NIAID/NIH CMCR centers, and a third level to all interested parties from inside and outside the University of Pittsburgh Medical Center. The Administrative Core oversees new grant collaborations (Table 1) and solicits and receives Pilot Project (Table 2) and Education and Development Core applications (Table 3) from post-doctoral fellows and faculty members throughout the United States and Canada. Applicafions are circulated among the Pitt CMCR review committees (First Drs. Kagan, Peterson, and Greenberger, then the Internal Advisory Committee (Fig. 1) for each respective program, reviews are collected, documentation ofthe reviews collated, and recommendation for funding fonwarded to NIAID colleagues for approval. The Administrative Core serves as liaison with the Institutional IACUC Program to make sure of compliance of all projects, cores, and pilot projects/education and development core applicants with institutional regulations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI068021-08
Application #
8382549
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
8
Fiscal Year
2012
Total Cost
$46,551
Indirect Cost
$14,041
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Knickelbein, Kyle; Tong, Jingshan; Chen, Dongshi et al. (2018) Restoring PUMA induction overcomes KRAS-mediated resistance to anti-EGFR antibodies in colorectal cancer. Oncogene 37:4599-4610
Wei, Liang; Leibowitz, Brian J; Epperly, Michael et al. (2018) The GS-nitroxide JP4-039 improves intestinal barrier and stem cell recovery in irradiated mice. Sci Rep 8:2072
Christner, Susan; Guo, Jianxia; Parise, Robert A et al. (2018) Liquid chromatography-tandem mass spectrometric assay for the quantitation of the novel radiation protective agent and radiation mitigator JP4-039 in murine plasma. J Pharm Biomed Anal 150:169-175
Wang, Yi-Jun; Fletcher, Rochelle; Yu, Jian et al. (2018) Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis 5:194-203
Chen, Dongshi; Tong, Jingshan; Yang, Liheng et al. (2018) PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc Natl Acad Sci U S A 115:3930-3935
Chen, Dongshi; Ni, Hong-Min; Wang, Lei et al. (2018) PUMA induction mediates acetaminophen-induced necrosis and liver injury. Hepatology :
Chao, Honglu; Anthonymuthu, Tamil S; Kenny, Elizabeth M et al. (2018) Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury. JCI Insight 3:
Steinman, Justin; Epperly, Michael; Hou, Wen et al. (2018) Improved Total-Body Irradiation Survival by Delivery of Two Radiation Mitigators that Target Distinct Cell Death Pathways. Radiat Res 189:68-83
Lou, Wenjia; Ting, Hsiu-Chi; Reynolds, Christian A et al. (2018) Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1354-1368
Anthonymuthu, Tamil S; Kenny, Elizabeth M; Lamade, Andrew M et al. (2018) Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 124:493-503

Showing the most recent 10 out of 203 publications