Celiac disease (CD) is an immune mediated disorder in which there is an immune response to the exogenous antigen gluten (from wheat, rye, and barley) in individuals who are HLA restricted. The disease causes duodenal inflammation but can be reversed by withdrawal from gluten. Patients experience loss of oral tolerance (LOT) to gluten, with T cells and B cells reactive. Patients also produce mucosal autoantibodies to the enzyme transglutaminase 2 (TG2) which is involved in gluten metabolism. We previously found that TG2- specific plasma represent 10% of antibody-secreting cells (ASCs) within the duodenal mucosa of patients with active CD. These anti-TG2 B cells and antibodies are believed to enhance or perpetuate disease either directly through antibody-mediated effector mechanisms, such as compliment deposition, or by presentation of gluten peptides, perpetuating the LOT by T cells. It is therefore important to understand the origin of anti-TG2 autoantibody responses. We also previously found that anti-TG2 antibodies were encoded by a highly restricted repertoire of Ig genes, consisting predominantly of VH5-51 and two other VH genes. Repertoire restrictions such as this are often reminiscent of a distinct subset of B cells, predominantly expressing Ig encoded by VH5-51. We now have preliminary data identifying a recirculating subset of IgA+ B cells that exhibit the same repertoire restrictions as the anti-TG2 antibodies but found in the blood of all healthy subjects. Notably, the recirculating population of IgA+ B cells and antibody-secreting cells (ASCs) in particular, has been associated with microbiota interactions. We hypothesize that these cells represent a distinct functional subset of the IgA peripheral blood repertoire that normally provides mucosal protection, but that can be induced to secrete anti-TG2 autoantibodies in susceptible individuals upon gluten exposure.
In aim 1 we will characterize the functional phenotype and transcriptome of this subset and we will determine if the subset is clonally linked to anti-TG2 mucosal ASCs in patients.
In aim 2 we will characterize the microbiota specificity of these blood- borne IgA ASCs from the blood and biopsied mucosal ASCs from patients with active disease and from control subjects at the monoclonal level. Finally, in aim 3 we will explore the origin of the TG2 autoantibody response in mucosal tissues. Particular cellular functions or distinct targeting of particular microbes, plus differences from control subject cells could provide important insight into the etiology of celiac disease. A novel cell-surface phenotype, such as expression of a particular CD marker, for example, or a particular cytokine receptor, could provide distinct targets useful for therapeutic intervention into disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI082724-12
Application #
9920102
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
12
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Chicago
Department
Type
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Kinloch, Andrew J; Kaiser, Ylva; Wolfgeher, Don et al. (2018) In Situ Humoral Immunity to Vimentin in HLA-DRB1*03+ Patients With Pulmonary Sarcoidosis. Front Immunol 9:1516
Chen, Yao-Qing; Wohlbold, Teddy John; Zheng, Nai-Ying et al. (2018) Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies. Cell 173:417-429.e10
Henry, Carole; Palm, Anna-Karin E; Krammer, Florian et al. (2018) From Original Antigenic Sin to the Universal Influenza Virus Vaccine. Trends Immunol 39:70-79
Wilson, Patrick C; Cobey, Sarah (2018) Characterization of the immunologic repertoire: A quick start guide. Immunol Rev 284:5-8
Stamper, Christopher T; Wilson, Patrick C (2018) What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? Is Affinity Maturation a Self-Defeating Process for Eliciting Broad Protection? Cold Spring Harb Perspect Biol 10:
Leon, Paul E; Wohlbold, Teddy John; He, Wenqian et al. (2017) Generation of Escape Variants of Neutralizing Influenza Virus Monoclonal Antibodies. J Vis Exp :
He, Wenqian; Chen, Chi-Jene; Mullarkey, Caitlin E et al. (2017) Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice. Nat Commun 8:846
DiPiazza, Anthony; Nogales, Aitor; Poulton, Nicholas et al. (2017) Pandemic 2009 H1N1 Influenza Venus reporter virus reveals broad diversity of MHC class II-positive antigen-bearing cells following infection in vivo. Sci Rep 7:10857
Lau, Denise; Lan, Linda Yu-Ling; Andrews, Sarah F et al. (2017) Low CD21 expression defines a population of recent germinal center graduates primed for plasma cell differentiation. Sci Immunol 2:
Bunker, Jeffrey J; Erickson, Steven A; Flynn, Theodore M et al. (2017) Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358:

Showing the most recent 10 out of 51 publications