The genetic variability and Individual variations in immune status dictate responses to vaccinations, infections, and contribute to disease severity. The sequencing of the human genome and generation of the Haplotype Map now enables a mechanistic understanding of how genetic variation influences human immune responses. Yet manifold non-genetic factors also interact to maintain the healthy immune system, and complex analysis will be required to form predictions for its response to perturbations. Here, we will employ systems approaches and novel, high throughput and high-fidelity technologies such as multiplexed gene expression, automated multidimensional flow cytometry, and integrated single-cell assays in nanowells to quantitatively assess leukocyte function to ultimately identify the molecular signatures defining individual immune responses. We will address immune profiles in three related studies. In Research Project 1, we will develop immunologic signatures of influenza vaccine responsiveness and determine the effect of aging and functional status on these signatures. We will identify gene signatures and biological pathways that can distinguish between strong and weak immune responses to vaccination and that predict effective responses. In Research Project 2, we will investigate resistance to flaviviral infections using West Nile virus, and hepatitis C virus;through analysis of responses in patients from stratified cohorts, we will establish correlations between gene expression, immune cell responses and clinical outcome. In Research Project 3, we will generate mathematical models that detect connectivity and predict dynamic functional responses of the immune system. This approach will link data collected on both populations and individuals using multivariate statistical approaches to integrate cohort-wide data including genome wide association studies and novel single-cell analyses to assess immune responsiveness in relationship to genetic variation. Our functional systems immunology approach will allow us to define baseline human immune signatures following viral infection and vaccination along with deviations from this baseline, with the goal of identifying future targets for intervention and establishing sets of biomarkers that predict responses to vaccination.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-QV-I (M2))
Program Officer
Dong, Gang
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Schools of Medicine
New Haven
United States
Zip Code
Murray, Kristy O; Nolan, Melissa S; Ronca, Shannon E et al. (2018) The Neurocognitive and MRI Outcomes of West Nile Virus Infection: Preliminary Analysis Using an External Control Group. Front Neurol 9:111
Molony, Ryan D; Malawista, Anna; Montgomery, Ruth R (2018) Reduced dynamic range of antiviral innate immune responses in aging. Exp Gerontol 107:130-135
Martin-Gayo, Enrique; Cole, Michael B; Kolb, Kellie E et al. (2018) A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers. Genome Biol 19:10
Wang, Xiaomei; Malawista, Anna; Qian, Feng et al. (2018) Age-related changes in expression and signaling of TAM receptor inflammatory regulators in monocytes. Oncotarget 9:9572-9580
Cahill, Megan E; Conley, Samantha; DeWan, Andrew T et al. (2018) Identification of genetic variants associated with dengue or West Nile virus disease: a systematic review and meta-analysis. BMC Infect Dis 18:282
van Dijk, David; Sharma, Roshan; Nainys, Juozas et al. (2018) Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell 174:716-729.e27
Ordovas-Montanes, Jose; Dwyer, Daniel F; Nyquist, Sarah K et al. (2018) Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560:649-654
Mead, Benjamin E; Ordovas-Montanes, Jose; Braun, Alexandra P et al. (2018) Harnessing single-cell genomics to improve the physiological fidelity of organoid-derived cell types. BMC Biol 16:62
Avey, Stefan; Mohanty, Subhasis; Wilson, Jean et al. (2017) Multiple network-constrained regressions expand insights into influenza vaccination responses. Bioinformatics 33:i208-i216
Cahill, Megan E; Yao, Yi; Nock, David et al. (2017) West Nile Virus Seroprevalence, Connecticut, USA, 2000-2014. Emerg Infect Dis 23:708-710

Showing the most recent 10 out of 64 publications