This CETR is an interdisciplinary consortium of groups from academia and the pharmaceutical industry, whose goal is to provide a center for development of therapeutic countermeasures against multidrug resistant bacteria as well as select agent pathogens, and to deliver candidates suitable for preclinical evaluation. The role of Core B is to provide pharmacokinetic, toxicological and tissue distribution evaluation during these early phases of drug discovery to (1) assist in hit triage, hit-to-lead progression and lead selection efforts, and (2) reduce the risk of costly failures later in the development process. We propose to leverage a fully integrated analytical platform and state-of-the-art animal facility available at the Regional Biocontainment Lab ofthe PHRI (Newark, NJ) to assist the assembled team in the optimization of hits and leads generated within each project. Relevant in vitro assays and in vivo studies will be integrated to guide rounds of structure-activity relationships in collaboration with the medicinal chemists (Core D). These assays include in vitro ADME evaluation, in vivo pharmacokinetics and tolerability studies in mice, in vitro toxicology assays, and lesion pharmacokinetic studies in relevant murine models and in the rabbit model of TB disease. A state-of-the-art MALDl mass spectrometry imaging platform will allow characterization of lead candidates for their ability to penetrate infected tissues, a question which has been largely neglected so far . in the development of new anti-infectives. Compound prioritization, resource allocation and phase transitions will be based on standard threshold parameters that are in line with industry guidelines. As a rule of thumb, the complete biological, pharmacokinetic and physico-chemical profile ofthe compounds, rather than single ' and rigid cutoff values, will be considered in all decision making processes. The Core B Leader, Veronique Dartois, has extensive experience in the pharmacological profiling of anti-infective compounds, acquired through 7 years in the field of neglected disease drug development.

Public Health Relevance

): Core B in the context of this proposal will speed the discovery and development of multiple new drugs against high-threat multidrug resistant Gram-positive and Gram-negative bacteria, select agent pathogens and multi-drug resistant tuberculosis. Each of these infectious disease areas constitutes a largely unmet medical need of growing concern for global health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI109713-05
Application #
9457320
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Rutgers University
Department
Type
DUNS #
078795851
City
Newark
State
NJ
Country
United States
Zip Code
Vila-Farres, Xavier; Chu, John; Ternei, Melinda A et al. (2018) An Optimized Synthetic-Bioinformatic Natural Product Antibiotic Sterilizes Multidrug-Resistant Acinetobacter baumannii-Infected Wounds. mSphere 3:
Papp-Wallace, Krisztina M; Barnes, Melissa D; Alsop, Jim et al. (2018) Relebactam Is a Potent Inhibitor of the KPC-2 ?-Lactamase and Restores Imipenem Susceptibility in KPC-Producing Enterobacteriaceae. Antimicrob Agents Chemother 62:
Lane, Thomas; Russo, Daniel P; Zorn, Kimberley M et al. (2018) Comparing and Validating Machine Learning Models for Mycobacterium tuberculosis Drug Discovery. Mol Pharm 15:4346-4360
Papp-Wallace, Krisztina M; Nguyen, Nhu Q; Jacobs, Michael R et al. (2018) Strategic Approaches to Overcome Resistance against Gram-Negative Pathogens Using ?-Lactamase Inhibitors and ?-Lactam Enhancers: Activity of Three Novel Diazabicyclooctanes WCK 5153, Zidebactam (WCK 5107), and WCK 4234. J Med Chem 61:4067-4086
Lin, Wei; Das, Kalyan; Degen, David et al. (2018) Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3). Mol Cell 70:60-71.e15
Inoyama, Daigo; Paget, Steven D; Russo, Riccardo et al. (2018) Novel Pyrimidines as Antitubercular Agents. Antimicrob Agents Chemother 62:
Becka, Scott A; Zeiser, Elise T; Barnes, Melissa D et al. (2018) Characterization of the AmpC ?-Lactamase from Burkholderia multivorans. Antimicrob Agents Chemother 62:
Hover, Bradley M; Kim, Seong-Hwan; Katz, Micah et al. (2018) Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat Microbiol 3:415-422
Barnes, Melissa D; Bethel, Christopher R; Alsop, Jim et al. (2018) Inactivation of the Pseudomonas-Derived Cephalosporinase-3 (PDC-3) by Relebactam. Antimicrob Agents Chemother 62:
Kumar, Pradeep; Capodagli, Glenn C; Awasthi, Divya et al. (2018) Synergistic Lethality of a Binary Inhibitor of Mycobacterium tuberculosis KasA. MBio 9:

Showing the most recent 10 out of 23 publications