The overall objective of this core is to provide large-scale immunology and influenza Virology support to enhance the product development activities of the center investigators. The core will provide multiplex cytokine/chemokine profiling, high-throughput humoral response monitoring via antigen-specific ELISA and Surface Plasmon Resonance, and provide comprehensive influenza virology support (viral stocks, titers and neutralization assays). To accomplish this goal the expertise and efforts of Dr. Sempowski's cellular immunology lab and Dr. Ramsburg's viral-immunology lab have been combined. The inclusion on an Immunology/Influenza Virology Core will-provide a common set of platforms for mechanistic analysis of host immune response for all three center investigators. The use of ELISA/SPR will allow for monitoring host response to both experimental vaccines/adjuvants and challenge pathogens. Blood, tissue and culture supernatant inflammatory biomarker analysis will provide further valuable insight into specific host responses which will only enhance the challenge and mechanistic studies proposed by center projects to develop nanopartical vaccines and therapeutics to Flu and Dengue. Lastly, the inclusion of a centralized lab for maintenance of influenza virus strains and tittered stocks for all projects will allow for uniform flu studies across all projects. Moreover, the influenza support lab will work closely with investigators and collaborators to ensure standardized execution of influenza viral titers and neutralizing antibody responses to influenza.

Public Health Relevance

This core will provide comprehensive immunology and influenza virology support to centralize and enhance the research and development activities of the center investigators. Specifically projects 1-3 will develop and test an innovative nanoparticle platform technology (PRINT) for antiviral vaccines and therapeutics. This highly focused program will investigate application of this technology to inhibiting Influenza and Dengue virus infection.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI109784-05
Application #
9517726
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Cheng, Liang; Wang, Qi; Li, Guangming et al. (2018) TLR3 agonist and CD40-targeting vaccination induces immune responses and reduces HIV-1 reservoirs. J Clin Invest 128:4387-4396
Metz, Stefan W; Thomas, Ashlie; Brackbill, Alex et al. (2018) Nanoparticle delivery of a tetravalent E protein subunit vaccine induces balanced, type-specific neutralizing antibodies to each dengue virus serotype. PLoS Negl Trop Dis 12:e0006793
Chen, Naihan; Gallovic, Matthew D; Tiet, Pamela et al. (2018) Investigation of tunable acetalated dextran microparticle platform to optimize M2e-based influenza vaccine efficacy. J Control Release 289:114-124
Collier, Michael A; Junkins, Robert D; Gallovic, Matthew D et al. (2018) Acetalated Dextran Microparticles for Codelivery of STING and TLR7/8 Agonists. Mol Pharm 15:4933-4946
Cheng, Ning; Watkins-Schulz, Rebekah; Junkins, Robert D et al. (2018) A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 3:
Chen, Naihan; Johnson, Monica M; Collier, Michael A et al. (2018) Tunable degradation of acetalated dextran microparticles enables controlled vaccine adjuvant and antigen delivery to modulate adaptive immune responses. J Control Release 273:147-159
Metz, Stefan W; Thomas, Ashlie; White, Laura et al. (2018) Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virol J 15:60
Shao, Wenwei; Earley, Lauriel F; Chai, Zheng et al. (2018) Double-stranded RNA innate immune response activation from long-term adeno-associated virus vector transduction. JCI Insight 3:
Junkins, Robert D; Gallovic, Matthew D; Johnson, Brandon M et al. (2018) A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J Control Release 270:1-13
Swanson, Karen V; Junkins, Robert D; Kurkjian, Cathryn J et al. (2017) A noncanonical function of cGAMP in inflammasome priming and activation. J Exp Med 214:3611-3626

Showing the most recent 10 out of 23 publications