Current vaccines to influenza and other RNA viruses have been designed to generate neutralizing antibodies (Ab), but cannot protect against new strains that arise each year and evade Ab from previous seasons. CD4 memory cells, however, respond to elements of the virus that do not change, but current vaccines have not been designed to optimize CD4 memory and the memory cells do not persist as long as antibody. Thus our focus is to define the potential of CD4 memory to provide immunity and to learn which subsets are needed and how they act. Our studies have shown that CD4 memory cells elicit innate responses when challenged even without live pathogen or pathogen components and we suggest that they may therefore act to enhance immunity without the need for the stimulus provided by live virus. We have shown that they can protect against live virus by activating innate cell NK cells and B cells, and thus may be able to generate robust immunity to new viral pathogens and enhance long-term B cell memory. The mechanisms leading to NK induction are little known. With our collaborators in the program, we will analyze the mechanisms by which the various subsets of CD4 memory: 1) interact with innate NK cells; 2) provide help for B cells in influenza and LCMV virus models and participate in heterosubtypic (response to different strain) and cross-reactive immunity and we will determine if memory cells can substitute for, or complement, the pathogen recognition pathways either induced by live virus or vaccine adjuvants in inducing NK cell activation. We will analyze the mechanisms involved in these CD4 helper activities. We will determine whether the memory cells have more potent activity because they are resistant to NK mediated killing and 3) we will examine these same CD4 memory responses in humans in collaboration with Project 4. We believe these studies will provide important insights into the potential of CD4 memory induction by vaccines that can provide superior immunity to respiratory pathogens while avoiding irnmunopathdiogy.

Public Health Relevance

Many viruses, such as influenza, mutate and undergo selection so they evade pre-existing Ab. Both infections and vaccines can induce CD4 memory T cells, which see mostly shared determinants and thus may provide immunity to new strains. Here we will determine how CD4 memory T cells can act to provide enhanced protection by helping NK cells and B cells and how they contribute to deleterious heterologous immunity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI109858-05
Application #
9526790
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Mallia, Conrad M
Project Start
Project End
Budget Start
2018-03-01
Budget End
2019-02-28
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Type
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
Strutt, T M; Dhume, K; Finn, C M et al. (2018) IL-15 supports the generation of protective lung-resident memory CD4 T cells. Mucosal Immunol 11:668-680
Devarajan, Priyadharshini; Jones, Michael C; Kugler-Umana, Olivia et al. (2018) Pathogen Recognition by CD4 Effectors Drives Key Effector and Most Memory Cell Generation Against Respiratory Virus. Front Immunol 9:596
Hatfield, Steven D; Daniels, Keith A; O'Donnell, Carey L et al. (2018) Weak vaccinia virus-induced NK cell regulation of CD4 T cells is associated with reduced NK cell differentiation and cytolytic activity. Virology 519:131-144
Becerra-Artiles, Aniuska; Santoro, Tessa; Stern, Lawrence J (2018) Evaluation of a method to measure HHV-6B infection in vitro based on cell size. Virol J 15:4
Marshall, Nikki B; Vong, Allen M; Devarajan, Priyadharshini et al. (2017) NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. J Immunol 198:1142-1155
Blevins, Sydney; Huseby, Eric S (2017) Killer T cells with a beta-flavi(r) for dengue. Nat Immunol 18:1186-1188
Antunes, Dinler A; Rigo, Maurício M; Freitas, Martiela V et al. (2017) Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy. Front Immunol 8:1210
Shin, Hyun Mu; Kapoor, Varun N; Kim, Gwanghun et al. (2017) Transient expression of ZBTB32 in anti-viral CD8+ T cells limits the magnitude of the effector response and the generation of memory. PLoS Pathog 13:e1006544
Song, InYoung; Gil, Anna; Mishra, Rabinarayan et al. (2017) Broad TCR repertoire and diverse structural solutions for recognition of an immunodominant CD8+ T cell epitope. Nat Struct Mol Biol 24:395-406
Watkin, Levi B; Mishra, Rabinarayan; Gil, Anna et al. (2017) Unique influenza A cross-reactive memory CD8 T-cell receptor repertoire has a potential to protect against EBV seroconversion. J Allergy Clin Immunol 140:1206-1210

Showing the most recent 10 out of 41 publications