The filoviruses, the ebolaviruses (EBOVs) and marburgviruses (MARVs), are category A priority pathogens that cause highly lethal hemorrhagic fever in humans with fatality rates approaching 90 percent (20). The well-characterized non-human primate models of filovirus, particularly Zaire EBOV (ZEBOV), infection are now the best developed models of viral hemorrhagic fever. Despite their recognized importance and the availability of good models, approved therapeutic approaches are lacking, due in part to an incomplete understanding of pathogenesis. Immune dysfunction appears to be a major component of filoviral hemorrhagic fever which is characterized by suppressed type I interferon (IFN) responses, excessive inflammation and coagulation, impaired dendritic cell (DC) function and massive apoptosis of lymphocytes. However, many details remain poorly defined and strategies to overcome dysregulated immunity are lacking. This Program addresses the hypothesis that filoviral IFN-antagonist proteins play a central role in the immune dysregulation characteristic of filoviral infection. It will test this hypothesis and define immunological mechanisms contributing to pathogenesis. This will be accomplished through the efforts of three highly integrated projects that each addresses a distinct objective. Project 1 wil define the structural/biochemical basis for IFN-antagonist-host factor interactions and identify loss of interaction mutations. Using a highly efficient lentivirus expression system, the impact of IFN-antagonist expression on DC maturation and function will be defined. Finally, through the use of the loss of interaction mutants and gene expression knockdown methods, the impact of the IFN-antagonists on specific DC pathways will be defined. Project 2 will address the hypotheses that that the disrupted maturation of DCs induced by EBOV and MARV infection will lead to impaired T cell activation and aberrant/absent T cell function and that the mechanisms of the filoviral IFN-antagonist proteins make key contributions to these outcomes. Project 3 will characterize the phenotype and functional status of dendritic cells and lymphocytes during infection, testing whether these populations are dysregulated by filovirus infection and define the contribution of IFN-antagonist functions to in vivo immune dysregulation. These efforts will span structural biology, innate immune signaling studies, DC-T cell interaction analyses and characterization of immune responses in filovirus-infected macaques. Their successful completion will provide unprecedented insight into the immune mechanisms that contribute to a viral hemorrhagic fever.

Public Health Relevance

Ebola and Marburg viruses, the filoviruses, cause a highly lethal hemorrhagic fever and are of concern as potential bioweapons. This project will develop antivirals targeting filovirus innate immune evasion functions and viral transcription to develop therapies effective against diverse filoviruses.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI109945-05
Application #
9212085
Study Section
Special Emphasis Panel (ZAI1-ZL-I (J1))
Program Officer
Repik, Patricia M
Project Start
2014-03-01
Project End
2019-02-28
Budget Start
2017-03-01
Budget End
2018-02-28
Support Year
5
Fiscal Year
2017
Total Cost
$1,861,376
Indirect Cost
$140,309
Name
Georgia State University
Department
Miscellaneous
Type
Organized Research Units
DUNS #
837322494
City
Atlanta
State
GA
Country
United States
Zip Code
30302
Edwards, Megan R; Liu, Hejun; Shabman, Reed S et al. (2018) Conservation of Structure and Immune Antagonist Functions of Filoviral VP35 Homologs Present in Microbat Genomes. Cell Rep 24:861-872.e6
Su, Zhaoming; Wu, Chao; Shi, Liuqing et al. (2018) Electron Cryo-microscopy Structure of Ebola Virus Nucleoprotein Reveals a Mechanism for Nucleocapsid-like Assembly. Cell 172:966-978.e12
Knoverek, Catherine R; Amarasinghe, Gaya K; Bowman, Gregory R (2018) Advanced Methods for Accessing Protein Shape-Shifting Present New Therapeutic Opportunities. Trends Biochem Sci :
Johnson, Britney; VanBlargan, Laura A; Xu, Wei et al. (2018) Human IFIT3 Modulates IFIT1 RNA Binding Specificity and Protein Stability. Immunity 48:487-499.e5
Younan, Patrick; Iampietro, Mathieu; Bukreyev, Alexander (2018) Disabling of lymphocyte immune response by Ebola virus. PLoS Pathog 14:e1006932
Chanthamontri, C Ken; Jordan, David; Wang, Wenjie et al. (2018) Ebola Viral Protein 35 N-terminus is a Parallel Tetramer. Biochemistry :
Bharaj, Preeti; Atkins, Colm; Luthra, Priya et al. (2017) The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication. J Virol 91:
Menicucci, Andrea R; Versteeg, Krista; Woolsey, Courtney et al. (2017) Transcriptome Analysis of Circulating Immune Cell Subsets Highlight the Role of Monocytes in Zaire Ebola Virus Makona Pathogenesis. Front Immunol 8:1372
Dilley, Kari A; Voorhies, Alexander A; Luthra, Priya et al. (2017) The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing. PLoS One 12:e0178717
Postler, Thomas S; Clawson, Anna N; Amarasinghe, Gaya K et al. (2017) Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Syst Biol 66:463-473

Showing the most recent 10 out of 46 publications