Through the Bioinformatics Core C, this TBRU will have not only the capacity to generate high throughput data, but in addition, will be able to employ state of the art analytical methods to interpret the data. In particular, Bioinformatics Core C will support customized genotyping and sequencing strategies in Peruvian populations (Project 1), will use high-throughput transcriptional assays to query and define genetic networks for tuberculosis susceptibility (Project 2), and will expand automated cytometric data analysis tools for immune-systems biology (Project 2). Each of these goals will be complemented by analytical expertise from Dr. Soumya Raychaudhuri (PI) and that of the members of the Core analytical team. To enable these goals the Core will support (1) Human genomic assays, including next-generation sequencing and exome-chip genotyping, (2) Transcriptional profiling with the Nanostring nCounterTM assay, and (3) High-throughput automated flow-cytometric data acquisition utilizing cutting edge analysis software. The Core will be flexible in its approach to accommodate evolving technologies and computational approaches as they come online

Public Health Relevance

Modern assays in biology can generate large volumes of data. In particular next-generation sequencing, high-throughput genotyping, and transcriptional profiling can quickly produce large-scale data sets that can be difficult to analyze. This core will not only apply these approaches to TBRU samples, but in addition will use state-of-the art analytical tools to integrate and interpret these complex data sets data.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI111224-06
Application #
9857538
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2020-02-01
Budget End
2021-01-31
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
James, Charlotte A; Yu, Krystle K Q; Gilleron, Martine et al. (2018) CD1b Tetramers Identify T Cells that Recognize Natural and Synthetic Diacylated Sulfoglycolipids from Mycobacterium tuberculosis. Cell Chem Biol 25:392-402.e14
Mizoguchi, Fumitaka; Slowikowski, Kamil; Wei, Kevin et al. (2018) Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat Commun 9:789
Davenport, Emma E; Amariuta, Tiffany; Gutierrez-Arcelus, Maria et al. (2018) Discovering in vivo cytokine-eQTL interactions from a lupus clinical trial. Genome Biol 19:168
Carette, Xavier; Platig, John; Young, David C et al. (2018) Multisystem Analysis of Mycobacterium tuberculosis Reveals Kinase-Dependent Remodeling of the Pathogen-Environment Interface. MBio 9:
Lehmann, Johannes; Cheng, Tan-Yun; Aggarwal, Anup et al. (2018) An Antibacterial ?-Lactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis. Angew Chem Int Ed Engl 57:348-353
Wun, Kwok S; Reijneveld, Josephine F; Cheng, Tan-Yun et al. (2018) T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids. Nat Immunol 19:397-406
Moody, D Branch; Cotton, Rachel N (2017) Four pathways of CD1 antigen presentation to T cells. Curr Opin Immunol 46:127-133
Critchley, Julia A; Restrepo, Blanca I; Ronacher, Katharina et al. (2017) Defining a Research Agenda to Address theĀ Converging Epidemics of Tuberculosis and Diabetes: Part 1: Epidemiology and Clinical Management. Chest 152:165-173
Ronacher, Katharina; van Crevel, Reinout; Critchley, Julia A et al. (2017) Defining a Research Agenda to Address theĀ Converging Epidemics of Tuberculosis and Diabetes: Part 2: Underlying Biologic Mechanisms. Chest 152:174-180
Hinks, A; Bowes, J; Cobb, J et al. (2017) Fine-mapping the MHC locus in juvenile idiopathic arthritis (JIA) reveals genetic heterogeneity corresponding to distinct adult inflammatory arthritic diseases. Ann Rheum Dis 76:765-772

Showing the most recent 10 out of 49 publications