Inefficiency of gene delivery, together with inadequate bystander killing represent two major hurdles in the development of toxin-mediated gene transfer for treatment of human malignancy. The E.coli Deo D gene (purine nucleoside phosphorylase (PNP)) is a well characterized enzyme that is capable of catalyzing the conversion of several nontoxic deoxyadenosine analogs to highly toxic adenine analogs. We have shown that expression of PNP in less that 1% of human cancer cells leads to death of virtually all bystander cells after treatment with the prodrug 6-methylpurine-2'- deoxyriboside (MeP-dR), a deoxyadenosine substrate for the E. coli PNP but not the human PNP. Prodrug activation as part of a gene therapy-based strategy offers substantial advantages over the expression of directly toxic genes, such as ricin, diphtheria toxin, or pseudomonas exotoxin. These advantages include the capability to 1) titrate cell killing, 2) optimize therapeutic index by adjusting either levels of prodrug or of recombinant enzyme expression, and 3) interrupt toxicity by omitting administration of the prodrug. This proposal intends to use recombinant DNA technology to evaluate E.coli PNP mediated tumor cell killing in vitro, to characterize bystander killing using this gene, and to develop animal models for the delivery of E.coli PNP to established tumors in vivo. Two specific model systems for use of E.coli PNP during in vivo treatment of tumors are proposed: 1) retroviral based treatment of intracranial glioblastoma; and 2) cationic liposomal gene transfer for treatment of metastatic solid tumors such as melanoma.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19CA067763-05
Application #
6203305
Study Section
Project Start
1999-09-01
Project End
2000-08-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
5
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Southern Research Institute
Department
Type
DUNS #
006900526
City
Birmingham
State
AL
Country
United States
Zip Code
35205
Hassan, Abdalla E A; Abou-Elkhair, Reham A I; Parker, William B et al. (2016) 6-Methylpurine derived sugar modified nucleosides: Synthesis and evaluation of their substrate activity with purine nucleoside phosphorylases. Bioorg Chem 65:9-16
Hassan, Abdalla E A; Abou-Elkhair, Reham A I; Riordan, James M et al. (2012) Synthesis and evaluation of the substrate activity of C-6 substituted purine ribosides with E. coli purine nucleoside phosphorylase: palladium mediated cross-coupling of organozinc halides with 6-chloropurine nucleosides. Eur J Med Chem 47:167-74
Kang, You-Na; Zhang, Yang; Allan, Paula W et al. (2010) Structure of grouper iridovirus purine nucleoside phosphorylase. Acta Crystallogr D Biol Crystallogr 66:155-62
Tai, C-K; Wang, W; Lai, Y-H et al. (2010) Enhanced efficiency of prodrug activation therapy by tumor-selective replicating retrovirus vectors armed with the Escherichia coli purine nucleoside phosphorylase gene. Cancer Gene Ther 17:614-23
Hassan, Abdalla E A; Parker, William B; Allan, Paula W et al. (2009) Regioselective metalation of 6-methylpurines: synthesis of fluoromethyl purines and related nucleosides for suicide gene therapy of cancer. Nucleosides Nucleotides Nucleic Acids 28:642-56
Sorscher, E J; Harris, J; Alexander, M et al. (2006) Activators of viral gene expression in polarized epithelial monolayers identified by rapid-throughput drug screening. Gene Ther 13:781-8
Dontsova, Maria V; Gabdoulkhakov, Azat G; Molchan, Olga K et al. (2005) Preliminary investigation of the three-dimensional structure of Salmonella typhimurium uridine phosphorylase in the crystalline state. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:337-40
Silamkoti, A V; Allan, P W; Hassan, A E A et al. (2005) Synthesis and biological activity of 2-fluoro adenine and 6-methyl purine nucleoside analogs as prodrugs for suicide gene therapy of cancer. Nucleosides Nucleotides Nucleic Acids 24:881-5
Toms, Angela V; Wang, Weiru; Li, Yingbo et al. (2005) Novel multisubstrate inhibitors of mammalian purine nucleoside phosphorylase. Acta Crystallogr D Biol Crystallogr 61:1449-58
Zang, Yang; Wang, Wen-Hu; Wu, Shaw-Wen et al. (2005) Identification of a subversive substrate of Trichomonas vaginalis purine nucleoside phosphorylase and the crystal structure of the enzyme-substrate complex. J Biol Chem 280:22318-25

Showing the most recent 10 out of 29 publications