In sub-Project 2 we will conduct a series of in vitro, and in silico investigations to assign a gene function to each validated risk variant and examine whether loss or gain of function of these genes in breast epithelial or stromal cells alter phenotypes in vitro in a 3-D model of breast morphogenesis and oncogenesis. As an initial assessment of potential gene function, we will use the DASL assay to determine the level of 24,000 RNA transcripts in breast tumor and normal tissue, from women for whom we also have an lllumina 540 GWAS data available. This will enable us to conduct expression quantitative trait locus (eQTL) analyses of cis and trans associations between >2.5 million SNPs (genotyped and imputed) and the ievels of each transcript and transcription patterns (Aim 1). We will develop an online tool and make these data publicly available that breast cancer researchers will then be able to use to conduct their own analyses (Aim 1). Using computational techniques we will conduct Bayesian Network analyses, and Gene-set enrichment analyses to identify networks of genes in which alterations of expression can be linked to specific germline risk variants (Aim 2). For risk variants that are in intergenic regions and potential enhancers, we will use Chromosomal Conformation Capture (3C) assays to examine whether these risk loci physically interact with distant DNA loci across the genome (Aim 3). Finally, for the genes that are identified in Aims 1-3, we will explore whether overexpression or knockdown of these genes alters the phenotypes of breast epithelial and stromal cells in a 3-D model of breast cancer development (Aim 4). These approaches are all directed at elucidating the mechanisms by which germline risk variants alter risk of breast cancer, information that may then lead to development of pharmacologic approaches to breast cancer prevention and treatment.

Public Health Relevance

In sub-Project 2 we will conduct a series of laboratory and computational investigations to assign a gene function to each validated genetic risk variant for breast cancer. We will also examine how loss or gain of function of these genes alter phenotypes in a 3-D model of breast morphogenesis and oncogenesis. Data generated by this proposal will be critical in translating GWAS data into clinical targets that can be utilized for early detection, risk stratification, and drug development for the prevention and treatment of breast cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-4 (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
United States
Zip Code
Heng, Yujing J; Wang, Jun; Ahearn, Thomas U et al. (2018) Molecular mechanisms linking high body mass index to breast cancer etiology in post-menopausal breast tumor and tumor-adjacent tissues. Breast Cancer Res Treat :
Painter, Jodie N; O'Mara, Tracy A; Morris, Andrew P et al. (2018) Genetic overlap between endometriosis and endometrial cancer: evidence from cross-disease genetic correlation and GWAS meta-analyses. Cancer Med 7:1978-1987
Mancuso, Nicholas; Gayther, Simon; Gusev, Alexander et al. (2018) Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nat Commun 9:4079
Brand, Judith S; Humphreys, Keith; Li, Jingmei et al. (2018) Common genetic variation and novel loci associated with volumetric mammographic density. Breast Cancer Res 20:30
Nowak, Christoph; Ärnlöv, Johan (2018) A Mendelian randomization study of the effects of blood lipids on breast cancer risk. Nat Commun 9:3957
Borgquist, Signe; Rosendahl, Ann H; Czene, Kamila et al. (2018) Long-term exposure to insulin and volumetric mammographic density: observational and genetic associations in the Karma study. Breast Cancer Res 20:93
Zuber, Verena; Jönsson, Erik G; Frei, Oleksandr et al. (2018) Identification of shared genetic variants between schizophrenia and lung cancer. Sci Rep 8:674
Wu, Lang; Shi, Wei; Long, Jirong et al. (2018) A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nat Genet 50:968-978
O'Mara, Tracy A; Glubb, Dylan M; Amant, Frederic et al. (2018) Identification of nine new susceptibility loci for endometrial cancer. Nat Commun 9:3166
Scannell Bryan, Molly; Argos, Maria; Andrulis, Irene L et al. (2018) Germline Variation and Breast Cancer Incidence: A Gene-Based Association Study and Whole-Genome Prediction of Early-Onset Breast Cancer. Cancer Epidemiol Biomarkers Prev 27:1057-1064

Showing the most recent 10 out of 162 publications