The goal of Associate Program 2 is to use ecological insights to guide the discovery of novel natural products with biological activity against a targeted group of diseases critical to developing nations and to the United States. In complex environments such as near-shore marine habitats, secondary metabolism has evolved over billions of years in response to intense selection pressure on organisms to solve critical challenges associated with survival and reproduction. In particular, tropical coral reefs host diverse microorganisms, algae, and invertebrates that use chemical cues and chemical defenses as a language driving interactions among and within species. Small organic molecules that are critical in mediating ecological interactions are strong candidates for new medicines targeting infectious disease caused by bacteria, fungi, and parasites, in addition to cancer and neurological disorders. We will explore understudied coral reef organisms including rare species of marine algae and invertebrates and microbes associated with algal and coral surfaces. We will apply ecological assays to uncover novel secondary metabolism, extending our previous work testing for antimicrobial, antiherbivore, and allelopathic compounds by adding microbial overlay and challenge assays to seek chemically rich microbes specialized as pathogens, mutualists, or commensals that produce unique secondary metabolites due to complex ecological interactions. Pursuit of lead drug molecules will be based on prioritized activity in a series of pharmacological screens relevant to infectious disease, tropical neglected disease, cancer, and neurodegenerative and CNS disorders. Identification of novel natural product structures will utilize modern spectroscopic techniques, leading to preclinical studies. Once our aims are met, we will have contributed novel pharmaceutical leads to the biomedical research community; revealed new molecular scaffolds and receptor-ligand interactions to the chemistry and chemical biology communities; learned new lessons on the roles of chemical cues and chemical defenses among marine macro- and microorganisms; applied new metabolomic and metabolic networking approaches to studying secondary metabolism in marine organisms; and trained a generation of scientific personnel in the U.S. and the South Pacific.

Agency
National Institute of Health (NIH)
Institute
Fogarty International Center (FIC)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19TW007401-12
Application #
9122519
Study Section
Special Emphasis Panel (ZRG1-BCMB-H)
Project Start
Project End
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
12
Fiscal Year
2016
Total Cost
$272,347
Indirect Cost
Name
Georgia Institute of Technology
Department
Type
DUNS #
097394084
City
Atlanta
State
GA
Country
United States
Zip Code
30318
Beatty, Deanna S; Clements, Cody S; Stewart, Frank J et al. (2018) Intergenerational effects of macroalgae on a reef coral: major declines in larval survival but subtle changes in microbiomes. Mar Ecol Prog Ser 589:97-114
Chhetri, Bhuwan Khatri; Lavoie, Serge; Sweeney-Jones, Anne Marie et al. (2018) Recent trends in the structural revision of natural products. Nat Prod Rep 35:514-531
Clements, Cody S; Rasher, Douglas B; Hoey, Andrew S et al. (2018) Spatial and temporal limits of coral-macroalgal competition: the negative impacts of macroalgal density, proximity, and history of contact. Mar Ecol Prog Ser 586:11-20
Clements, Cody S; Hay, Mark E (2018) Overlooked coral predators suppress foundation species as reefs degrade. Ecol Appl 28:1673-1682
Bonaldo, Roberta M; Pires, Mathias M; GuimarĂ£es Junior, Paulo Roberto et al. (2017) Small Marine Protected Areas in Fiji Provide Refuge for Reef Fish Assemblages, Feeding Groups, and Corals. PLoS One 12:e0170638
Patin, Nastassia V; Schorn, Michelle; Aguinaldo, Kristen et al. (2017) Effects of Actinomycete Secondary Metabolites on Sediment Microbial Communities. Appl Environ Microbiol 83:
Amos, Gregory C A; Awakawa, Takayoshi; Tuttle, Robert N et al. (2017) Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proc Natl Acad Sci U S A 114:E11121-E11130
Asolkar, Ratnakar N; Singh, Ahilya; Jensen, Paul R et al. (2017) Marinocyanins, cytotoxic bromo-phenazinone meroterpenoids from a marine bacterium from the streptomycete clade MAR4. Tetrahedron 73:2234-2241
Rasher, Douglas B; Hoey, Andrew S; Hay, Mark E (2017) Cascading predator effects in a Fijian coral reef ecosystem. Sci Rep 7:15684
Machado, Henrique; Tuttle, Robert N; Jensen, Paul R (2017) Omics-based natural product discovery and the lexicon of genome mining. Curr Opin Microbiol 39:136-142

Showing the most recent 10 out of 69 publications