The West Coast Central Comprehensive Metabolomics Resource Core (WC3MRC) will offer integrated services through a Metabolomics Central Service Core, and offer advanced services, including method developments, through the Metabolomics Advanced Services Core. Combined, the WC3MRC commands over 30 mass spectrometers, 5 NMR instruments and cutting-edge imaging equipment, and computer clusters with in-house as well as open-access and commercial software for metabolomic data acquisition, data processing, and data analysis including pathway mapping. Statistical support, tool development and advanced metabolic network analysis will be conducted in the Genomics Integration Core, while pilot and feasibility projects as well as courses and workshops will be organized by the Promotion and Outreach Core, to be led by the UC Davis Clinical and Translational Science Center (CISC). Overall management and data transfer to the Data Center will be performed by the Administrative Core. Specifically, the WC3MRC will be the first center in the United States that offers quantitative targeting of over 1,000 identified metabolites over a wide variety of biochemical pathways. For all these metabolites, reference standards are available and sample preparation, mass spectra and chromatographic conditions have been validated. Additionally, the WC3MRC will use untargeted metabolomic methods by accurate mass spectrometry for discovery-driven projects, including compound identifications. Methods used in the Advanced Core laboratories will be robotized and transferred to the Central Service Core for use by recharge fee services. Novel services and tools will be developed, ranging from isotope-labeled flux analysis to image guided metabolomics that will link to the established clientele using the imaging facility. Pathway annotations will be improved through curation of HumanCyc enzymes and by using InChI structure identifiers that will be used to construct complete metabolic networks that are subsequently used for pathway over enrichment statistical analysis. Both local and regional scientists will be engaged through annual, competitive pilot and feasibility awards. Participation and award criteria have been worked out and will be conducted by the CTSC. Training programs will educate the next generation of metabolomics scientists, both on the technical and the medical level.

Public Health Relevance

Better understanding of metabolism is highly relevant for fighting major diseases in the United States, from diabetes to cancer and cardiovascular diseases. The new center for comprehensive metabolic analysis at UC Davis will serve clinical and biomedical researchers across the West Coast with access to cutting-edge tools, collaborations and interpretation of data.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Maruvada, Padma
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
Schools of Medicine
United States
Zip Code
Carr, Tara F; Zeki, Amir A; Kraft, Monica (2018) Eosinophilic and Noneosinophilic Asthma. Am J Respir Crit Care Med 197:22-37
Mansour, Ahmed M; Abdelrahim, Mona; Laymon, Mahmoud et al. (2018) Epidermal growth factor expression as a predictor of chemotherapeutic resistance in muscle-invasive bladder cancer. BMC Urol 18:100
Agrawal, Karan; Sivamani, Raja K; Newman, John W (2018) Noninvasive profiling of sweat-derived lipid mediators for cutaneous research. Skin Res Technol :
Zeki, Amir A; Elbadawi-Sidhu, Mona (2018) Innovations in asthma therapy: is there a role for inhaled statins? Expert Rev Respir Med 12:461-473
Agrawal, Karan; Bosviel, Rémy; Piccolo, Brian D et al. (2018) Oral ibuprofen differentially affects plasma and sweat lipid mediator profiles in healthy adult males. Prostaglandins Other Lipid Mediat 137:1-8
Shahid, Muhammad; Gull, Nicole; Yeon, Austin et al. (2018) Alpha-oxoglutarate inhibits the proliferation of immortalized normal bladder epithelial cells via an epigenetic switch involving ARID1A. Sci Rep 8:4505
Yeon, Austin; You, Sungyong; Kim, Minhyung et al. (2018) Rewiring of cisplatin-resistant bladder cancer cells through epigenetic regulation of genes involved in amino acid metabolism. Theranostics 8:4520-4534
Kim, Jayoung (2018) Era of the Fourth Industrial Revolution and the Urologists' Journey to Navigating Big Omics Data. Int Neurourol J 22:S101-102
Shahid, Muhammad; Lee, Min Young; Yeon, Austin et al. (2018) Menthol, a unique urinary volatile compound, is associated with chronic inflammation in interstitial cystitis. Sci Rep 8:10859
Hook, Vivian; Lietz, Christopher B; Podvin, Sonia et al. (2018) Diversity of Neuropeptide Cell-Cell Signaling Molecules Generated by Proteolytic Processing Revealed by Neuropeptidomics Mass Spectrometry. J Am Soc Mass Spectrom 29:807-816

Showing the most recent 10 out of 184 publications