Diagnostic reagents and assays to detect biodefense pathogens are critical needs for public safety. Two key components for a successful molecular diagnostic assay are a sensor component that binds directly to the targeted organism, or to a product secreted by the organism, and a signal domain that indicates, with great sensitivity, when the sensor has bound the target molecule. Over the past 18 months we have implemented proven technologies: phage-display, covalent protein-DNA linkage, and real-time PCR, along with the results from our antigen discovery research, to begin to create a powerful diagnostic assay to detect the presence of Francisella tularensis (Ft) in biological and environmental samples as well as immune responses directed against Ft. The protein-DNA chimeras central to these assays are called tadpoles, which are capable of achieving a much greater level of sensitivity (~106-fold greater) compared to analogous enzyme-linked immunosorbent assays (ELISAs). Furthermore these diagnostics are able to identify target molecules over a wide dynamic range of concentrations. In this proposal, we will multiplex the tadpole assay to include additional fever and diarrheal agents as outlined in the overall WRCE diagnostic theme plan. Ft, Rift Valley fever virus, and Cryptosporidium parvum will serve as initial, comparative controls for the platform WRCE diagnostic approaches, and the agent list will be expanded in later years according to the WRCE plan. Furthermore, we will seek to integrate elemental technologies from other platforms being developed in the WRCE diagnostic group, such as lateral flow microfluidics, to expand the utility of tadpole diagnostics as they are further multiplexed for the simultaneous detection of numerous agents and are adapted for point-of-care usage in addition to their use in the reference laboratory.

Public Health Relevance

Diagnostics that can detect minute quantities of a biodefense pathogen organism and/or that can detect whether a person has been infected by such an organism early in the course of infection are greatly needed. We will use cutting-edge strategies to create diagnostic reagents and assays that can identify tiny amounts of multiple biodefense pathogens in complex samples to a high degree of sensitivity. The strategies applied here can easily be adapted to create similar reagents for any biodefense or infectious disease concern.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057156-07
Application #
8042576
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
7
Fiscal Year
2010
Total Cost
$443,261
Indirect Cost
Name
University of Texas Medical Br Galveston
Department
Type
DUNS #
800771149
City
Galveston
State
TX
Country
United States
Zip Code
77555
Pandey, Aseem; Lin, Furong; Cabello, Ana L et al. (2018) Activation of Host IRE1?-Dependent Signaling Axis Contributes the Intracellular Parasitism of Brucella melitensis. Front Cell Infect Microbiol 8:103
Russell-Lodrigue, Kasi E; Killeen, Stephanie Z; Ficht, Thomas A et al. (2018) Mucosal bacterial dissemination in a rhesus macaque model of experimental brucellosis. J Med Primatol 47:75-77
Matz, L M; Kamdar, K Y; Holder, M E et al. (2018) Challenges of Francisella classification exemplified by an atypical clinical isolate. Diagn Microbiol Infect Dis 90:241-247
Langsjoen, Rose M; Haller, Sherry L; Roy, Chad J et al. (2018) Chikungunya Virus Strains Show Lineage-Specific Variations in Virulence and Cross-Protective Ability in Murine and Nonhuman Primate Models. MBio 9:
Rossetti, Carlos A; Drake, Kenneth L; Lawhon, Sara D et al. (2017) Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein-Protein Interactions. Front Microbiol 8:1275
Paterson, Andrew S; Raja, Balakrishnan; Mandadi, Vinay et al. (2017) A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors. Lab Chip 17:1051-1059
Raja, B; Goux, H J; Marapadaga, A et al. (2017) Development of a panel of recombinase polymerase amplification assays for detection of common bacterial urinary tract infection pathogens. J Appl Microbiol 123:544-555
Nunes, Marcio R T; Contreras-Gutierrez, María Angélica; Guzman, Hilda et al. (2017) Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus. Virology 504:152-167
Park, Arnold; Yun, Tatyana; Vigant, Frederic et al. (2016) Nipah Virus C Protein Recruits Tsg101 to Promote the Efficient Release of Virus in an ESCRT-Dependent Pathway. PLoS Pathog 12:e1005659
Pandey, Aseem; Cabello, Ana; Akoolo, Lavoisier et al. (2016) The Case for Live Attenuated Vaccines against the Neglected Zoonotic Diseases Brucellosis and Bovine Tuberculosis. PLoS Negl Trop Dis 10:e0004572

Showing the most recent 10 out of 384 publications