Arthropod-borne flaviviruses, and especially dengue viruses, cause a wide range of important human diseases for which there are no specific therapies. To address this critical shortfall in preparedness to confront these emerging and re-emerging viruses we have established a program to investigate host factors as targets of anti-dengue therapy. We have discovered many novel drug targets using functional genomics and en masse biochemical approaches. Among these are the 3'-5' exonucleases of the DnaQ/DEDDh superfamily of enzymes: EXD2, WRN and ERI3 (PRNPIP)). These enzymes are highly related to virally encoded exonucleases in SARS coronavirus and Lassa fever virus suggesting that the DnaQ/DEDDh superfamily of enzymes is widely used by pathogenic viruses and thus inhibitors of these enzymes could have broad spectrum of activity. We propose to characterize these enzymes in detail and to identify compounds that inhibit their activity and dengue infection. This will be achieved by 1) Developing in vitro assays for EXD2, WRN and ERI3 and 2) developing in vivo (yeast-based) assays to screen inhibitors of EXD2, WRN and ERI3. Significance to public health. Flaviviruses, and especially dengue virus, are an emerging threat to public health in the US, a current risk to our armed forces and other citizens deployed around the world, and a major problem globally. At this time there is little that can be done to prevent or treat the majority of flaviviral infections and therefore development of anti-flaviviral drugs is of crucial importance.

Public Health Relevance

Mosquito transmitted dengue viruses, cause a wide range of important human diseases for which there are no specific therapies. To address this critical shortfall in preparedness to confront these emerging and re-emerging viruses we propose to carry out work that will set the foundation for the discovery of new compounds that inhibit cellular enzymes that these viruses need to grow.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057157-11
Application #
8547122
Study Section
Special Emphasis Panel (ZAI1-DDS-M)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
11
Fiscal Year
2013
Total Cost
$221,807
Indirect Cost
$36,070
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Dethoff, Elizabeth A; Boerneke, Mark A; Gokhale, Nandan S et al. (2018) Pervasive tertiary structure in the dengue virus RNA genome. Proc Natl Acad Sci U S A 115:11513-11518
Graham, Rachel L; Deming, Damon J; Deming, Meagan E et al. (2018) Evaluation of a recombination-resistant coronavirus as a broadly applicable, rapidly implementable vaccine platform. Commun Biol 1:179
Qi, Xiaoxuan; Wang, Wenjian; Dong, Haohao et al. (2018) Expression and X-Ray Structural Determination of the Nucleoprotein of Lassa Fever Virus. Methods Mol Biol 1604:179-188
Kocher, Jacob F; Lindesmith, Lisa C; Debbink, Kari et al. (2018) Bat Caliciviruses and Human Noroviruses Are Antigenically Similar and Have Overlapping Histo-Blood Group Antigen Binding Profiles. MBio 9:
Dhanwani, Rekha; Huang, Qinfeng; Lan, Shuiyun et al. (2018) Establishment of Bisegmented and Trisegmented Reverse Genetics Systems to Generate Recombinant Pichindé Viruses. Methods Mol Biol 1604:247-253
Shao, Junjie; Liu, Xiaoying; Liang, Yuying et al. (2018) Assays to Assess Arenaviral Glycoprotein Function. Methods Mol Biol 1604:169-178
Huang, Qinfeng; Shao, Junjie; Liang, Yuying et al. (2018) Assays to Demonstrate the Roles of Arenaviral Nucleoproteins (NPs) in Viral RNA Synthesis and in Suppressing Type I Interferon. Methods Mol Biol 1604:189-200
Gunn, Bronwyn M; Jones, Jennifer E; Shabman, Reed S et al. (2018) Ross River virus envelope glycans contribute to disease through activation of the host complement system. Virology 515:250-260
Shao, Junjie; Liang, Yuying; Ly, Hinh (2018) Roles of Arenavirus Z Protein in Mediating Virion Budding, Viral Transcription-Inhibition and Interferon-Beta Suppression. Methods Mol Biol 1604:217-227
Wirawan, Melissa; Fibriansah, Guntur; Marzinek, Jan K et al. (2018) Mechanism of Enhanced Immature Dengue Virus Attachment to Endosomal Membrane Induced by prM Antibody. Structure :

Showing the most recent 10 out of 400 publications