Many projects within the Northeast Biodefense Center application require high-quality purified recombinant proteins and pseudotyped virus for their research. The goal of the Protein Expression Core is to facilitate the investigative, developmental, and pilot studies proposed in the various themes of this application. The staff of the Core will assist investigators in the translation of their studies to quality controlled standard assays, vaccines or therapeutics. Staff will work with investigators to develop expression systems for the proteins required for their studies either using commercial vectors or customized expression vectors. The facility will provide a complete protein expression and purification service. This will include access to well established bacterial expression capabilities at the Wadsworth Center;specialized capabilities exploiting mammalian, insect expression, and in vitro translation at the Albert Einstein College of Medicine;and the production of specially designed pseudotyped VSV viruses that greatly facilitate analysis of neutralizing antibodies at Yale University. These three service components, headed by experts within their field, will allow the rapid provision of reagents for research projects and provide the NBC with the flexibility to support the wide range of existing needs and to respond rapidly to the changing requirements of principal investigators and changing NIAID mandates. In addition, the Core will maintain stable stocks of proteins and expression strains so that in a time of emergency, production of these materials will be rapid.

Public Health Relevance

The NBC Protein Expression Core provides high-quality purified proteins and pseudotyped virus to NBC investigators. Reagents are critical to the success of the biodefense research projects described in this application.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI057158-07
Application #
8043561
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2010-03-01
Budget End
2011-02-28
Support Year
7
Fiscal Year
2010
Total Cost
$561,444
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Li, Xiao-Ping; Kahn, Jennifer N; Tumer, Nilgun E (2018) Peptide Mimics of the Ribosomal P Stalk Inhibit the Activity of Ricin A Chain by Preventing Ribosome Binding. Toxins (Basel) 10:
Goldman, David L; Nieves, Edward; Nakouzi, Antonio et al. (2018) Serum-Mediated Cleavage of Bacillus anthracis Protective Antigen Is a Two-Step Process That Involves a Serum Carboxypeptidase. mSphere 3:
Marié, Isabelle J; Chang, Hao-Ming; Levy, David E (2018) HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med 215:3194-3212
Uhde, Melanie; Ajamian, Mary; Wormser, Gary P et al. (2017) Reply to Naktin. Clin Infect Dis 64:1145-1146
Chen, Han; Coseno, Molly; Ficarro, Scott B et al. (2017) A Small Covalent Allosteric Inhibitor of Human Cytomegalovirus DNA Polymerase Subunit Interactions. ACS Infect Dis 3:112-118
Aguilar, Jorge L; Varshney, Avanish K; Pechuan, Ximo et al. (2017) Monoclonal antibodies protect from Staphylococcal Enterotoxin K (SEK) induced toxic shock and sepsis by USA300 Staphylococcus aureus. Virulence 8:741-750
Zhou, Yijun; Li, Xiao-Ping; Chen, Brian Y et al. (2017) Ricin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk. Sci Rep 7:42912
Lauretti, Flavio; Chattopadhyay, Anasuya; de Oliveira França, Rafael Freitas et al. (2016) Recombinant vesicular stomatitis virus-based dengue-2 vaccine candidate induces humoral response and protects mice against lethal infection. Hum Vaccin Immunother 12:2327-33
Tadin, Ante; Tokarz, Rafal; Markoti?, Alemka et al. (2016) Molecular Survey of Zoonotic Agents in Rodents and Other Small Mammals in Croatia. Am J Trop Med Hyg 94:466-73
Basu, Debaleena; Li, Xiao-Ping; Kahn, Jennifer N et al. (2016) The A1 Subunit of Shiga Toxin 2 Has Higher Affinity for Ribosomes and Higher Catalytic Activity than the A1 Subunit of Shiga Toxin 1. Infect Immun 84:149-61

Showing the most recent 10 out of 655 publications