The overall goal of the Mitogenic Signaling Networks project is the development of high level statistical and specific physico-chemical models that describe key features of mitogenic signaling networks activated by ErbB receptors and by oncogenic K-ras. Over the past 4 years we have made significant progress in developing models of ErbB family mitogenic signaling networks in a variety of cell types, including statistical and kinetic models describing the effects of increased expression of various ErbB family members. Over the next five years we will extend these models to include mitogenic signaling networks resulting from mutant isoforms of EGFR and K-Ras that are directly associated with poor prognosis in human cancers of the central nervous and respiratory systems. Models will be developed and tested at a variety of scales, including in vitro cell culture systems, murine xenografts, and mouse cancer models. In addition, due to the success of a pilot project funded from our current ICBP, we will extend these models to integrate transcriptional regulatory networks, providing a more global, quantitative model of cellular regulation in response to oncogenic mutation. Since therapeutic resistance is one of the hallmarks of lung and brain tumors driven by mutant EGFR and mutant Ras, in the next phase of this project we will quantify and model signaling and transcriptional network alterations resulting from treatment with a variety of therapeutics, including classical chemotherapeutics, targeted therapeutics, and radiation. The goal of this project is to understand adaptation mechanisms used by tumor cells in developing therapeutic resistance in order to target these adaptive mechanisms to revert resistance. Quantitative models of mitogenic signaling network responses to therapeutics will be applied to human tumors to test their ability to predict responsiveness of human tumors to selected chemotherapeutic agents. This project will facilitate the integration of mitogenic signaling network models with DNA damage response models developed in Project 2, leading to more integrated models of cellular regulatory networks.

Public Health Relevance

EGFR and Ras mutations are prevalent in brain and lung cancers and are correlated with poor patient prognosis. Current therapeutic options have not significantly extended survival rates. We propose to develop quantitative models describing signaling and transcriptional networks activated by these mutant isoforms. Models will be used to identify novel therapeutic targets and adaptive mechanisms associated with therapeutic resistance.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
United States
Zip Code
Kulkarni, Madhura; Tan, Tuan Zea; Syed Sulaiman, Nurfarhanah Bte et al. (2018) RUNX1 and RUNX3 protect against YAP-mediated EMT, stem-ness and shorter survival outcomes in breast cancer. Oncotarget 9:14175-14192
Oudin, Madeleine J; Barbier, Lucie; Schäfer, Claudia et al. (2017) MENA Confers Resistance to Paclitaxel in Triple-Negative Breast Cancer. Mol Cancer Ther 16:143-155
Bruno, Peter M; Liu, Yunpeng; Park, Ga Young et al. (2017) A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 23:461-471
Werbin, Jeffrey L; Avendaño, Maier S; Becker, Verena et al. (2017) Multiplexed Exchange-PAINT imaging reveals ligand-dependent EGFR and Met interactions in the plasma membrane. Sci Rep 7:12150
Miller, Miles A; Sullivan, Ryan J; Lauffenburger, Douglas A (2017) Molecular Pathways: Receptor Ectodomain Shedding in Treatment, Resistance, and Monitoring of Cancer. Clin Cancer Res 23:623-629
Nagel, Zachary D; Kitange, Gaspar J; Gupta, Shiv K et al. (2017) DNA Repair Capacity in Multiple Pathways Predicts Chemoresistance in Glioblastoma Multiforme. Cancer Res 77:198-206
Oudin, Madeleine J; Jonas, Oliver; Kosciuk, Tatsiana et al. (2016) Tumor Cell-Driven Extracellular Matrix Remodeling Drives Haptotaxis during Metastatic Progression. Cancer Discov 6:516-31
White, Forest M; Wolf-Yadlin, Alejandro (2016) Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks. Annu Rev Anal Chem (Palo Alto Calif) 9:295-315
Wilson, Jennifer L; Dalin, Simona; Gosline, Sara et al. (2016) Pathway-based network modeling finds hidden genes in shRNA screen for regulators of acute lymphoblastic leukemia. Integr Biol (Camb) 8:761-74
Zhao, Boyang; Hemann, Michael T; Lauffenburger, Douglas A (2016) Modeling Tumor Clonal Evolution for Drug Combinations Design. Trends Cancer 2:144-158

Showing the most recent 10 out of 222 publications