This CCNE core for Education and Outreach has the following main functions: (1) to develop curricula on cancer nanotechnology for an emerging generation of young investigators in the physical sciences, bioengineering, medical schools, schools of public health and nursing, and PhD trainees in cancer biology;to provide new research protocols and procedures for other laboratories via website and CDROM publications to the world cancer research community;(3) to provide continuing medical education (CME) opportunities for US clinicians (both oncologists and oncology nurses) engaged in multidisciplinary cancer care who will see nanotechnology emerge in the care of their cancer patients;and (4) to become a leader with our neighbors and partners at the Centers for Disease Control and the American Cancer Society in patient, family, and US media nanotechnology educational materials written at the lay level. These efforts are designed to reach a broad spectrum of people who could benefit from cancer nanotechnology, including the cancer research community, clinical oncology care community, undergraduates in engineering, medical students, graduate students, and the US news media.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA119338-05
Application #
7937753
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
2012-08-31
Budget Start
2009-09-01
Budget End
2012-08-31
Support Year
5
Fiscal Year
2009
Total Cost
$137,751
Indirect Cost
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Lee, Kate Y J; Lee, Gee Young; Lane, Lucas A et al. (2017) Functionalized, Long-Circulating, and Ultrasmall Gold Nanocarriers for Overcoming the Barriers of Low Nanoparticle Delivery Efficiency and Poor Tumor Penetration. Bioconjug Chem 28:244-252
Kaddi, Chanchala D; Wang, May D (2017) Models for Predicting Stage in Head and Neck Squamous Cell Carcinoma Using Proteomic and Transcriptomic Data. IEEE J Biomed Health Inform 21:246-253
Tong, Li; Yang, Cheng; Wu, Po-Yen et al. (2016) Evaluating the impact of sequencing error correction for RNA-seq data with ERCC RNA spike-in controls. IEEE EMBS Int Conf Biomed Health Inform 2016:74-77
Phan, John H; Hoffman, Ryan; Kothari, Sonal et al. (2016) Integration of Multi-Modal Biomedical Data to Predict Cancer Grade and Patient Survival. IEEE EMBS Int Conf Biomed Health Inform 2016:577-580
Wu, Po-Yen; Wang, May D (2016) The Selection of Quantification Pipelines for Illumina RNA-seq Data Using a Subsampling Approach. IEEE EMBS Int Conf Biomed Health Inform 2016:78-81
Raharjo, I; Burns, T G; Venugopalan, J et al. (2016) Development of user-friendly and interactive data collection system for cerebral palsy. IEEE EMBS Int Conf Biomed Health Inform 2016:406-409
Kothari, Sonal; Wu, Hang; Tong, Li et al. (2016) Automated Risk Prediction for Esophageal Optical Endomicroscopic Images. IEEE EMBS Int Conf Biomed Health Inform 2016:160-163
Quan, Li; Wu, Jiangxiao; Lane, Lucas A et al. (2016) Enhanced Detection Specificity and Sensitivity of Alzheimer's Disease Using Amyloid-?-Targeted Quantum Dots. Bioconjug Chem 27:809-14
Mishra, Sameer; Kaddi, Chanchala D; Wang, May D (2016) Pan-cancer analysis for studying cancer stage using protein and gene expression data. Conf Proc IEEE Eng Med Biol Soc 2016:2440-2443
Pethiyagoda, Theruni; Chanani, Nikhil; Cheng, Chihwen et al. (2016) PEPCOR - A Risk Prediction Model for Pediatric Intensive Care Units Utilizing Ventilator Days and Length of Stay. IEEE EMBS Int Conf Biomed Health Inform 2016:86-89

Showing the most recent 10 out of 238 publications