Recently, the incidence of esophageal (EAC) and gastro-esophageal junction (GEJAC) adenocarcinoma has increased dramatically, and have a poor 5-year survival rate of less than 15%. When detected early, these patients can have a good clinical outcome following surgery. These observations underscore the importance of early cancer detection. Patients with Barrett's esophagus (BE) are known to be at increased risk. Our overarching goal is to advance new methods of imaging to visualize the effects of spatial distribution of genetic alterations in BE by using novel imaging methods to evaluate tumor heterogeneity on the progression toward EAC. We propose a multi-institutional, trans-disciplinary, translational Research Center in the Barrett's Esophagus Translational Research Network (BETRNet). Our mission is to build on our expertise in genomic characterization, peptide biochemistry, and clinical translation to achieve our ultimate goal to perform early cancer detection at an early stage where therapeutic intervention can be most effective. We will identify a complementary panel of genes that are overexpressed on the cell surface and will be used to develop and validate new peptide imaging agents. The targets chosen will address 3 important clinical needs: 1) Real-time endoscopic identification of pre-malignant lesions and early stage cancer to guide endoscopic resection; 2) Risk stratification of BE patients for timing of endoscopic surveillance; and 3) Detection of gastro- esophageal junction adenocarcinomas in patients without endoscopic appearance of BE. We will use state-of-the-art genomic tools to to identify early overexpressed gene targets that arise in progression of BE to EAC by providing comprehensive analyses of gene expression alterations, DNA copy number variation, and genetic mutations. We will select candidate genes that are expressed on the cell surface where they can be endoscopically imaged in vivo. We will rigorously validate the panel of candidate targets with quantitative RT-PCR and immunohistochemistry on tissue microarrays using an independent cohort of human esophagus specimens. We will use these targets to first identify and validate monomer peptides that are highly specific. We will then arrange monomer peptides in a dimer configuration to produce multivalent ligand target interactions to improve binding performance and allow for early targets to be detected at low levels of expression. We will use a flexible fiber multi-spectral endoscope that can pass through the working channel of a standard medical endoscope to detect multiple targets at the same time. Successful completion of these aims will provide an integrated multi-spectral imaging methodology to longitudinally visualize overexpressed molecular targets that drive progression of Barrett's esophagus to esophageal adenocarcinoma. This innovative approach can serve as the foundation for validated preventive measures to improve patient management.

Public Health Relevance

Cancer of the esophagus is growing faster than any other cancer in developed countries. Pre-cancerous tissues are difficult to detect with conventional white light endoscopy because they have a flat appearance and patchy distribution. We will identify key genes that drive progression of this deadly disease that can be visualized with imaging.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
2U54CA163059-06
Application #
9277831
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (J1))
Program Officer
Richmond, Ellen S
Project Start
2011-09-21
Project End
2022-04-30
Budget Start
2017-05-26
Budget End
2018-04-30
Support Year
6
Fiscal Year
2017
Total Cost
$977,504
Indirect Cost
$294,697
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Joshi, Bishnu P; Wang, Thomas D (2018) Targeted Optical Imaging Agents in Cancer: Focus on Clinical Applications. Contrast Media Mol Imaging 2018:2015237
Rubenstein, Joel H; Waljee, Akbar K; Dwamena, Ben et al. (2018) Yield of Higher-Grade Neoplasia in Barrett's Esophagus With Low-Grade Dysplasia Is Double in the First Year Following Diagnosis. Clin Gastroenterol Hepatol 16:1529-1530
Tavakkoli, Anna; Appelman, Henry D; Beer, David G et al. (2018) Use of Appropriate Surveillance for Patients With Nondysplastic Barrett's Esophagus. Clin Gastroenterol Hepatol 16:862-869.e3
Stachler, Matthew D; Camarda, Nicholas D; Deitrick, Christopher et al. (2018) Detection of Mutations in Barrett's Esophagus Before Progression to High-Grade Dysplasia or Adenocarcinoma. Gastroenterology 155:156-167
Chen, Jing; Gao, Zhenghong; Li, Gaoming et al. (2018) Dual-modal in vivo fluorescence and photoacoustic imaging using a heterodimeric peptide. Chem Commun (Camb) 54:13196-13199
Jiang, Yang; Gong, Yuanzheng; Rubenstein, Joel H et al. (2017) Toward real-time quantification of fluorescence molecular probes using target/background ratio for guiding biopsy and endoscopic therapy of esophageal neoplasia. J Med Imaging (Bellingham) 4:024502
Savastano, Luis E; Seibel, Eric J (2017) Scanning Fiber Angioscopy: A Multimodal Intravascular Imaging Platform for Carotid Atherosclerosis. Neurosurgery 64:188-198
Zhou, Juan; He, Lei; Pang, Zhijun et al. (2017) Identification and validation of FGFR2 peptide for detection of early Barrett's neoplasia. Oncotarget 8:87095-87106
Savastano, Luis E; Zhou, Quan; Smith, Arlene et al. (2017) Multimodal laser-based angioscopy for structural, chemical and biological imaging of atherosclerosis. Nat Biomed Eng 1:
Ferrer-Torres, Daysha; Nancarrow, Derek J; Kuick, Rork et al. (2016) Genomic similarity between gastroesophageal junction and esophageal Barrett's adenocarcinomas. Oncotarget 7:54867-54882

Showing the most recent 10 out of 45 publications