The structure, function and expression of the keratin intermediate filaments of human and mouse skin, and the related intermediate filament proteins of other cell types, are being investigated. These studies are designed to understand the structural features that determine how the rod domains of the chains pack to form the filament core. Current models are being tested using electron microscopic methods as well as by analysis of the products generated on limited proteolytic digestion of intact filaments or subfilamentous forms of them. The glycine-rich end domains of especially the keratin 1/10 filaments of epidermal cells are unique in biology. We believe these organize into a glycine-loop configuration. Current studies are designed to determine how these are packed and how they might interact with other macromolecules co- expressed in epidermal tissues. The glycine loop sequences on the human keratin 10 chain are extraordinarily polymorphic in size and sequence. Using genomic clones to the human keratin chains 1 and 10, transgenic mice have been constructed to examine the expression characteristics of the genes as well as to probe in vivo the likely functions of the various portions of the chains, such as rod domain segments and glycine- rich end domains.

Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
1991
Total Cost
Indirect Cost
Name
National Institute of Arthritis and Musculoskeletal and Skin Diseases
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Nemes, Zoltan; Devreese, B; Steinert, P M et al. (2004) Cross-linking of ubiquitin, HSP27, parkin, and alpha-synuclein by gamma-glutamyl-epsilon-lysine bonds in Alzheimer's neurofibrillary tangles. FASEB J 18:1135-7
Mucke, Norbert; Wedig, Tatjana; Burer, Andrea et al. (2004) Molecular and biophysical characterization of assembly-starter units of human vimentin. J Mol Biol 340:97-114
Fraser, R D Bruce; Steinert, Peter M; Parry, David A D (2003) Structural changes in trichocyte keratin intermediate filaments during keratinization. J Struct Biol 142:266-71
Marekov, Lyuben N; Steinert, Peter M (2003) Charge derivatization by 4-sulfophenyl isothiocyanate enhances peptide sequencing by post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 38:373-7
Steinert, Peter M; Parry, David A D; Marekov, Lyuben N (2003) Trichohyalin mechanically strengthens the hair follicle: multiple cross-bridging roles in the inner root shealth. J Biol Chem 278:41409-19
Mehrani, T; Wu, K C; Morasso, M I et al. (2001) Residues in the 1A rod domain segment and the linker L2 are required for stabilizing the A11 molecular alignment mode in keratin intermediate filaments. J Biol Chem 276:2088-97
Sprecher, E; Ishida-Yamamoto, A; Becker, O M et al. (2001) Evidence for novel functions of the keratin tail emerging from a mutation causing ichthyosis hystrix. J Invest Dermatol 116:511-9
Wu, K C; Bryan, J T; Morasso, M I et al. (2000) Coiled-coil trigger motifs in the 1B and 2B rod domain segments are required for the stability of keratin intermediate filaments. Mol Biol Cell 11:3539-58
Herrmann, H; Strelkov, S V; Feja, B et al. (2000) The intermediate filament protein consensus motif of helix 2B: its atomic structure and contribution to assembly. J Mol Biol 298:817-32
Wang, H; Parry, D A; Jones, L N et al. (2000) In vitro assembly and structure of trichocyte keratin intermediate filaments: a novel role for stabilization by disulfide bonding. J Cell Biol 151:1459-68