The liver is an organ with strong innate immunity, which plays an important role in host defense against microbial infection and tumor transformation. Emerging evidence suggests that innate immunity as well as a variety of cytokines produced by innate immune cells also contribute to the pathogenesis of acute and chronic liver diseases. Our laboratory has been actively studying the role of innate immunity and its associated cytokines in liver injury and repair. During the fiscal year, we have demonstrated that Hepatocytes and neutrophils cooperatively suppress bacterial infection by differentially regulating lipocalin-2 and neutrophil extracellular traps. Lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin (NGAL), a key antibacterial protein, is highly elevated in patients with end-stage liver disease that is often associated with bacterial infection. LCN2 is expressed at high levels in both hepatocytes and neutrophils; however, how hepatocyte-derived and neutrophil-derived LCN2 cooperate to combat bacterial infection remains unclear. Here, by studying hepatocyte-specific and myeloid-specific Lcn2 knockout mice in two models of systemic and local Klebsiella pneumoniae infections, we demonstrated that hepatocytes played a critical role in controlling systemic infection by secreting LCN2 protein into the circulation following intraperitoneal injection of bacteria, whereas neutrophils were more important in combating local lung infection by carrying LCN2 in their specific granules to the local infection site following intratracheal intubation of bacteria. Both hepatocyte-derived and myeloid cell-derived LCN2 were required against bacterial infection in the peritoneal cavity and liver necrotic areas following intraperitoneal injection of Klebsiella pneumoniae. LCN2/NGAL protein was detected in neutrophil extracellular traps (NETs) in activated neutrophils from mice and humans. Disruption of the Lcn2 gene in neutrophils abolished LCN2 on NETs, whereas deletion of this gene in hepatocytes did not affect LCN2 protein on NETs. Genetic deletion of the Lcn2 gene globally or specifically in neutrophils did not affect NET formation but reduced the bactericidal effect of NETs in vitro. Finally, NGAL-positive NETs were detected in the liver from patients with various types of liver diseases. CONCLUSION: Both hepatocytes and neutrophils combat bacterial infection through the production of LCN2; extracellular LCN2 secreted by hepatocytes limits systemic bacterial infection, whereas neutrophils carry LCN2 protein to the local site and against local bacterial infection through NETs

Project Start
Project End
Budget Start
Budget End
Support Year
17
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Alcohol Abuse and Alcoholism
Department
Type
DUNS #
City
State
Country
Zip Code
Alves-Paiva, Raquel M; Kajigaya, Sachiko; Feng, Xingmin et al. (2018) Telomerase enzyme deficiency promotes metabolic dysfunction in murine hepatocytes upon dietary stress. Liver Int 38:144-154
Ouyang, Xinshou; Han, Sheng-Na; Zhang, Ji-Yuan et al. (2018) Digoxin Suppresses Pyruvate Kinase M2-Promoted HIF-1? Transactivation in Steatohepatitis. Cell Metab 27:339-350.e3
Gao, Bin; Xiang, Xiaogang (2018) Interleukin-22 from bench to bedside: a promising drug for epithelial repair. Cell Mol Immunol :
Chen, Hanqing; Shen, Feng; Sherban, Alex et al. (2018) DEP domain-containing mTOR-interacting protein suppresses lipogenesis and ameliorates hepatic steatosis and acute-on-chronic liver injury in alcoholic liver disease. Hepatology 68:496-514
Guillot, Adrien; Gasmi, Imène; Brouillet, Arthur et al. (2018) Interleukins-17 and 27 promote liver regeneration by sequentially inducing progenitor cell expansion and differentiation. Hepatol Commun 2:329-343
Li, Hongjie; Feng, Dechun; Cai, Yan et al. (2018) Hepatocytes and neutrophils cooperatively suppress bacterial infection by differentially regulating lipocalin-2 and neutrophil extracellular traps. Hepatology 68:1604-1620
Jiang, Yiming; Feng, Dechun; Ma, Xiaochao et al. (2018) Pregnane X Receptor Regulates Liver Size and Liver Cell Fate via Yes-associated Protein Activation. Hepatology :
Shi, Jijing; Zhao, Juanjuan; Zhang, Xin et al. (2017) Activated hepatic stellate cells impair NK cell anti-fibrosis capacity through a TGF-?-dependent emperipolesis in HBV cirrhotic patients. Sci Rep 7:44544
He, Yong; Feng, Dechun; Li, Man et al. (2017) Hepatic mitochondrial DNA/Toll-like receptor 9/MicroRNA-223 forms a negative feedback loop to limit neutrophil overactivation and acetaminophen hepatotoxicity in mice. Hepatology 66:220-234
Wang, Meng; Frasch, S Courtney; Li, Guiying et al. (2017) Role of gp91phox in hepatic macrophage programming and alcoholic liver disease. Hepatol Commun 1:765-779

Showing the most recent 10 out of 69 publications