During normal development progenitor cells of many tissues undergo progressive restriction of pluripotency, epithelial-to-mesenchymal transition, proliferation, migration, and differentiation. Most, if not all, of these events involve modifications of cell-cell and cell-matrix adhesion, and abnormal modifications of these adhesion systems are often associated with the formation of tumors. The Eph family of receptor tyrosine kinases and their ligands, the ephrins, are frequently over-expressed in a wide variety of cancers, including breast, small-cell lung and gastrointestinal cancers, melanomas, and neuroblastomas. Using the Xenopus embryonic system, we have demonstrated that signaling mediated by the intracellular domain of ephrinB affects cell-cell adhesion, and that this activity can be modulated by interaction with an activated FGF receptor. The transmembrane ephrinB1 protein is a bi-directional signaling molecule that signals through its cytoplasmic domain to promote cellular movements into the eye field, whereas activation of the fibroblast growth factor receptor (FGFR) represses these movements and retinal fate. In Xenopus embryos, ephrinB1 plays a role in retinal progenitor cell movement into the eye field through an interaction with the scaffold protein Dishevelled (Dsh). However, the mechanism by which the FGFR may regulate this cell movement is unknown. Here we present evidence that FGFR-induced repression of retinal fate is dependent upon phosphorylation within the intracellular domain of ephrinB1. We demonstrate that phosphorylation of tyrosines 324 and 325 within ephrinB1 disrupts the ephrinB1/Dsh interaction, thus modulating retinal progenitor movement that is dependent on the planar cell polarity (PCP) pathway. These results provide mechanistic insight into how FGF signaling modulates ephrinB1 control of retinal progenitor movement within the eye field.During normal development progenitor cells of many tissues undergo progressive restriction of pluripotency, epithelial-to-mesenchymal transition, proliferation, migration, and differentiation. Most, if not all, of these events involve modifications of cell-cell and cell-matrix adhesion, and abnormal modifications of these adhesion systems are often associated with the formation of tumors. The Eph family of receptor tyrosine kinases and their ligands, the ephrins, are frequently over-expressed in a wide variety of cancers, including breast, small-cell lung and gastrointestinal cancers, melanomas, and neuroblastomas. Using the Xenopus embryonic system, we have demonstrated that signaling mediated by the intracellular domain of ephrinB affects cell-cell adhesion, and that this activity can be modulated by interaction with an activated FGF receptor. The transmembrane ephrinB1 protein is a bi-directional signaling molecule that signals through its cytoplasmic domain to promote cellular movements into the eye field, whereas activation of the fibroblast growth factor receptor (FGFR) represses these movements and retinal fate. In Xenopus embryos, ephrinB1 plays a role in retinal progenitor cell movement into the eye field through an interaction with the scaffold protein Dishevelled (Dsh). However, the mechanism by which the FGFR may regulate this cell movement is unknown. Here we present evidence that FGFR-induced repression of retinal fate is dependent upon phosphorylation within the intracellular domain of ephrinB1. We demonstrate that phosphorylation of tyrosines 324 and 325 within ephrinB1 disrupts the ephrinB1/Dsh interaction, thus modulating retinal progenitor movement that is dependent on the planar cell polarity (PCP) pathway. These results provide mechanistic insight into how FGF signaling modulates ephrinB1 control of retinal progenitor movement within the eye field.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010006-08
Application #
7965177
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2009
Total Cost
$593,214
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Cho, H J; Hwang, Y-S; Yoon, J et al. (2018) EphrinB1 promotes cancer cell migration and invasion through the interaction with RhoGDI1. Oncogene 37:861-872
Gaur, Shailly; Mandelbaum, Max; Herold, Mona et al. (2016) Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm. Genesis 54:334-49
Cho, Hee Jun; Hwang, Yoo-Seok; Mood, Kathleen et al. (2014) EphrinB1 interacts with CNK1 and promotes cell migration through c-Jun N-terminal kinase (JNK) activation. J Biol Chem 289:18556-68
Klein, Steven L; Neilson, Karen M; Orban, John et al. (2013) Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes. PLoS One 8:e61845
Bulut, G; Hong, S-H; Chen, K et al. (2012) Small molecule inhibitors of ezrin inhibit the invasive phenotype of osteosarcoma cells. Oncogene 31:269-81
Neilson, Karen M; Klein, Steven L; Mhaske, Pallavi et al. (2012) Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate. Dev Biol 365:363-75
Singh, Arvinder; Winterbottom, Emily; Daar, Ira O (2012) Eph/ephrin signaling in cell-cell and cell-substrate adhesion. Front Biosci 17:473-97