This study demonstrates that CD8+ T cells in the tumor microenvironment display reduced functionality and hyporesponsiveness. TGF-beta contributed markedly to the tumor-infiltrating CD8+ T cells (TILs) reduced functionality, which could be reversed using a small molecule TGF-beta inhibitor. Upon T-cell receptor (TCR) activation, the activation of ITK and ERK kinases were reduced in CD8+ TILs, as compared to splenic CD8+ T cells: TGF-beta inhibitor could reverse this phenomenon. This study demonstrates for the first time the association of the Spred-1 gene, an inhibitor of the Ras/MAPK pathway, with CD8+ TILs and TGF-beta activity. Spred-1 was upregulated in CD8+ TILs and TGF-beta enhanced the expression of Spred-1 in effctor/ memory CD8+ T cells and not in rested/memory CD8+ T cells. Based on these findings, this study supports the hypothesis that TGF-beta mediates an inhibitory mechanism on CD8+ TILs involving TCR-signaling blockade and the upregulation of Spred-1, thus implicating Spred-1 as a potential new target for future anti-tumor immune studies. Tumor-associated antigens are weakly immunogenic. Human carcinoembryonic antigen (CEA) is overexpressed on a wide range of human carcinomas and represents an attractive target for cancer immunotherapy. This study analyzes the ability of a Saccharomyces cerevisiae vector containing the transgene encoding CEA (yeast-CEA) to activate human dendritic cells (DCs) and stimulate CEA-specific T-cell responses. We demonstrate for the first time that treatment with yeast-CEA can activate human DCs, resulting in increases in surface expression of CD80, CD83, CD54, CD58, and MHC class II, and increased production by DCs of IL-12p70, TNF-alpha, IFN-gamma, IL-8, IL-2, IL-13, IL-10, and IL-1beta.We also show that human DCs treated with yeast-CEA can activate CEA-specific T-cell lines and can act as antigen-presenting cells (APCs) to generate CEA-specific T-cell lines capable of lysing CEA+ human tumor cells. Gene expression profiles of human DCs treated with yeast-CEA show increased expression of numerous genes involved in the production of chemokines and cytokines and their receptors, and genes related to antigen uptake, antigen presentation, and signal transduction. We have previously shown that the suppressive function of regulatory T cells (Tregs) from peripheral blood mononuclear cells (PBMCs) is enhanced in patients with prostate cancer when compared with healthy individuals. Two phase II studies using the PSA-TRICOM vaccine in patients with metastatic castration-resistant prostate cancer (mCRPC) showed evidence of patient benefit in terms of enhanced survival. The Halabi nomogram has been used to predict survival (HPS) of patients with mCRPC treated with conventional chemotherapy or second-line hormonal therapy. Tregs from PBMCs of patients (n = 23) with mCRPC were obtained pre- and post-three monthly vaccinations, and analyzed for number, phenotype, and suppressive function. Changes post- versus pre-vaccination in these parameters were compared with 3-year survival and HPS. No differences in Treg numbers were observed post- versus prevaccination. Trends (P = 0.029) were observed between overall survival (OS) and a decrease in Treg suppressive function post- versus pre-vaccination. Trends were also observed in analyzing effector:Treg (CD4+CD25+CD127-FoxP3+CTLA4+) ratio post- versus pre-vaccination with OS versus HPS. These data provide preliminary evidence for a possible association between improved OS and a decrease in Treg function when PBMCs are analyzed after three monthly vaccinations. Patients with an OS greater than HPS were more likely to have decreased Treg function following vaccine. Larger studies to confirm and extend these findings are warranted. Small molecule BCL-2 inhibitors are being examined as monotherapy in phase I/II clinical trials for several types of tumors. However, few data are available about the effect of BCL-2 inhibitors on immune function.
The aims of our study were to investigate the effect of a small molecule BCL-2 inhibitor on immune function and determine the most effective way of combining this inhibitor with a recombinant vaccine to treat tumors. The in vitro effect of the pan-BCL-2 inhibitor GX15-070 was assessed in mouse CD8 T lymphocytes at 2 different stages of activation as well as regulatory T lymphocytes (Treg). The in vivo effect of GX15-070 after recombinant vaccinia/fowlpox CEA-TRICOM vaccination was analyzed in tumor-infiltrating lymphocytes, and in splenocytes of mice bearing subcutaneous tumors. The therapeutic efficacy of such sequential therapy was measured as a reduction of pulmonary tumor nodules. Activated mature CD8 T lymphocytes were more resistant to GX15-070 as compared to early-activated cells. Treg function was significantly decreased after treatment with the BCL-2 inhibitor. In vivo, GX15-070 was given after vaccination so as to not negatively impact the induction of vaccine-mediated immunity, resulting in increased intratumoral activated CD8:Treg ratio and significant reduction of pulmonary tumor nodules. Our study is the first to show the effect of a small molecule BCL-2 inhibitor on the immune system and following a vaccine. It is also the first to demonstrate the efficacy of this sequence in reducing tumors in mouse models, providing a rationale for the design of combinational clinical studies. Studies comparing two or more vaccine platforms have historically evaluated each platform based on its ability to induce an immune response and may conclude that one vaccine is more efficacious than the other(s), leading to a recommendation for development of the more effective vaccine for clinical studies. Alternatively, these studies have documented the advantages of a diversified prime and boost regimen due to amplification of the antigen-specific T-cell population. We hypothesize here that two vaccine platforms targeting the same antigen might induce shared and distinct antigen-specific T-cell populations, and examined the possibility that two distinct vaccines could be used concomitantly. Using recombinant poxvirus and yeast vaccines, we compared the T-cell populations induced by these two platforms in terms of serum cytokine response, T-cell gene expression, T-cell receptor phenotype, antigen-specific cytokine expression, T-cell avidity, and T-cell antigen-specific tumor cell lysis. These studies demonstrate for the first time that vaccination with a recombinant poxvirus platform (rV/F-CEA/TRICOM) or a heat-killed yeast vaccine platform (yeast-CEA) elicits T-cell populations with both shared and unique phenotypic and functional characteristics. Furthermore, both the antigen and the vector play a role in the induction of distinct T-cell populations. In this study, we demonstrate that concurrent administration of two vaccines targeting the same antigen induces a more diverse T-cell population that leads to enhanced antitumor efficacy. These studies provide the rationale for future clinical studies investigating concurrent administration of vaccine platforms targeting a single antigen to enhance the antigen-specific immune response.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010944-04
Application #
8349240
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
2011
Total Cost
$668,432
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Knudson, Karin M; Hicks, Kristin C; Luo, Xiaoling et al. (2018) M7824, a novel bifunctional anti-PD-L1/TGF? Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncoimmunology 7:e1426519
Fujii, Rika; Schlom, Jeffrey; Hodge, James W (2018) A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab. J Neurosurg 128:1419-1427
McGee, Heather M; Daly, Megan E; Azghadi, Sohelia et al. (2018) Stereotactic Ablative Radiation Therapy Induces Systemic Differences in Peripheral Blood Immunophenotype Dependent on Irradiated Site. Int J Radiat Oncol Biol Phys 101:1259-1270
Friedman, Jay; Morisada, Megan; Sun, Lillian et al. (2018) Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies. J Immunother Cancer 6:59
Grenga, Italia; Donahue, Renee N; Gargulak, Morgan L et al. (2018) Anti-PD-L1/TGF?R2 (M7824) fusion protein induces immunogenic modulation of human urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis. Urol Oncol 36:93.e1-93.e11
Fujii, Rika; Jochems, Caroline; Tritsch, Sarah R et al. (2018) An IL-15 superagonist/IL-15R? fusion complex protects and rescues NK cell-cytotoxic function from TGF-?1-mediated immunosuppression. Cancer Immunol Immunother 67:675-689
Malamas, Anthony S; Hammond, Scott A; Schlom, Jeffrey et al. (2017) Combination therapy with an OX40L fusion protein and a vaccine targeting the transcription factor twist inhibits metastasis in a murine model of breast cancer. Oncotarget 8:90825-90841
Jochems, Caroline; Tritsch, Sarah R; Pellom, Samuel Troy et al. (2017) Analyses of functions of an anti-PD-L1/TGF?R2 bispecific fusion protein (M7824). Oncotarget 8:75217-75231
Morillon 2nd, Y Maurice; Hammond, Scott A; Durham, Nicholas M et al. (2017) Enhanced immunotherapy by combining a vaccine with a novel murine GITR ligand fusion protein. Oncotarget 8:73469-73482
Fallon, Jonathan K; Vandeveer, Amanda J; Schlom, Jeffrey et al. (2017) Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody. Oncotarget 8:20558-20571

Showing the most recent 10 out of 55 publications