The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. Strong lipid affinity of the ectodomain suggests that its heptad repeat regions play an active role in destabilizing membranes by directly binding to the lipid bilayers and thereby lowering the free-energy barrier for membrane fusion. In such a model, immediately following the shedding of gp120, the N-heptad and C-heptad helices dissociate and melt into the host cell and viral membranes, respectively, pulling the destabilized membranes into juxtaposition, ready for fusion. Post-fusion, reaching the final 6-helix bundle (6HB) conformation then involves competition between intermolecular interactions needed for formation of the symmetric 6HB trimer and the membrane affinity of gp41's ectodomain, including its membrane-proximal regions. Our solution NMR study of the structural and dynamic properties of three constructs containing the ectodomain of gp41 with and without its membrane-proximal regions suggests that these segments do not form inter-helical interactions until the very late steps of the fusion process. Interactions between the polar termini of the heptad regions, which are not associating with the lipid surface, therefore may constitute the main driving force initiating formation of the final post-fusion states. The absence of significant intermolecular ectodomain interactions in the presence of dodecyl phosphocholine highlights the importance of trimerization of gp41s transmembrane helix to prevent complete dissociation of the trimer during the course of fusion. To gain further insight into the intermediary steps of the fusion process we have studied the pH and dodecyl phosphocholine (DPC) micelle dependent trimer association of gp41 by systematic deletion analysis of an optimized construct termed 17-172 (residues 528 to 683 of Env) that spans the fusion peptide proximal region (FPPR) to the membrane proximal external region (MPER) of gp41, by sedimentation velocity and double electron-electron resonance (DEER) EPR spectroscopy. Trimerization at pH 7 requires the presence of both the FPPR and MPER regions. However, at pH 4, the protein completely dissociates to monomers. DEER measurements reveal a partial fraying of the C-terminal MPER residues in the 17-172 trimer while the other regions, including the FPPR, remain compact. In accordance, truncating nine C-terminal MPER residues (675-683) in the 17-172 construct does not shift the trimer-monomer equilibrium significantly. Thus, in the context of the gp41 ectodomain spanning residues 17-172, trimerization is clearly dependent on FPPR and MPER regions even when the terminal residues of MPER unravel. The antibody Z13e1, which spans both the 2F5 and 4E10 epitopes in MPER, binds to 17-172 with a Kd of 1 0.12 M. Accordingly, individual antibodies 2F5 and 4E10 also recognize the 17-172 trimer/DPC complex. We propose that binding of the C-terminal residues of MPER to the surface of the DPC micelles models a correct positioning of the trimeric transmembrane domain anchored in the viral membrane.

Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2016
Total Cost
Indirect Cost
Name
U.S. National Inst Diabetes/Digst/Kidney
Department
Type
DUNS #
City
State
Country
Zip Code
Chiliveri, Sai Chaitanya; Louis, John M; Ghirlando, Rodolfo et al. (2018) Tilted, Uninterrupted, Monomeric HIV-1 gp41 Transmembrane Helix from Residual Dipolar Couplings. J Am Chem Soc 140:34-37
Roche, Julien; Louis, John M; Aniana, Annie et al. (2015) Complete dissociation of the HIV-1 gp41 ectodomain and membrane proximal regions upon phospholipid binding. J Biomol NMR 61:235-48
Roche, Julien; Louis, John M; Grishaev, Alexander et al. (2014) Dissociation of the trimeric gp41 ectodomain at the lipid-water interface suggests an active role in HIV-1 Env-mediated membrane fusion. Proc Natl Acad Sci U S A 111:3425-30
Lakomek, Nils-Alexander; Kaufman, Joshua D; Stahl, Stephen J et al. (2013) Internal dynamics of the homotrimeric HIV-1 viral coat protein gp41 on multiple time scales. Angew Chem Int Ed Engl 52:3911-5
Lakomek, Nils-Alexander; Ying, Jinfa; Bax, Ad (2012) Measurement of ยน?N relaxation rates in perdeuterated proteins by TROSY-based methods. J Biomol NMR 53:209-21