Interleukin-17-producing T-cells (Th17) is one of the major CD4+ T-lymphocyte subtypes that mediate immunity in mammals. In comparison to the other T-cell subsets, Th17 are present in very low amounts in human blood but are highly elevated during chronic inflammation and are implicated in many autoimmune diseases. Currently, reasons for the remarkable success of Th17 cells as etiologic agents is unknown and in this study, we have investigated mechanisms that may explain the frequent involvement of Th17 cells in the etiology of organ-specific autoimmune diseases, such as uveitis and multiple sclerosis. Data derived from our studies have provided mechanistic explanation for the high pathogenicity of Th17 cells in autoimmune diseases. Our genetic ablation experiments in mice revealed that the quintessential Th17 transcription-factor, STAT3, collaborates with Class-O Forkhead transcription-factors in conferring survival advantages to Th17 phenotype. Our results also suggest that STAT3 is convergence point for mechanisms that regulate lymphocyte quiescence and those controlling T-cell activation and survival. Thus, similar to their role in regulating lifespan of Caenorhabditis elegans, we show that through its collaboration with STAT3 that FoxO functions extend to regulating lifespan of lymphoid cells.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAEY000372-10
Application #
8149155
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
2010
Total Cost
$202,906
Indirect Cost
Name
U.S. National Eye Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Yu, Cheng-Rong; Choi, Jin Kyeong; Uche, Anita N et al. (2018) Production of IL-35 by Bregs is mediated through binding of BATF-IRF-4-IRF-8 complex to il12a and ebi3 promoter elements. J Leukoc Biol 104:1147-1157
He, Chang; Yu, Cheng-Rong; Mattapallil, Mary J et al. (2016) SOCS1 Mimetic Peptide Suppresses Chronic Intraocular Inflammatory Disease (Uveitis). Mediators Inflamm 2016:2939370
Wang, Xiaoqian; Wei, Yinxiang; Xiao, He et al. (2016) Pre-existing CD19-independent GL7(-) Breg cells are expanded during inflammation and in mice with lupus-like disease. Mol Immunol 71:54-63
Wan, Chi-Keung; He, Chang; Sun, Lin et al. (2016) Cutting Edge: IL-1 Receptor Signaling is Critical for the Development of Autoimmune Uveitis. J Immunol 196:543-6
Wang, Xiaoqian; Wei, Yinxiang; Xiao, He et al. (2016) A novel IL-23p19/Ebi3 (IL-39) cytokine mediates inflammation in Lupus-like mice. Eur J Immunol 46:1343-50
Sun, Lin; St Leger, Anthony J; Yu, Cheng-Rong et al. (2016) Interferon Regulator Factor 8 (IRF8) Limits Ocular Pathology during HSV-1 Infection by Restraining the Activation and Expansion of CD8+ T Cells. PLoS One 11:e0155420
Egwuagu, C E; Sun, L; Kim, S-H et al. (2015) Ocular Inflammatory Diseases: Molecular Pathogenesis and Immunotherapy. Curr Mol Med 15:517-28
He, Chang; Yu, Cheng-Rong; Sun, Lin et al. (2015) Topical administration of a suppressor of cytokine signaling-1 (SOCS1) mimetic peptide inhibits ocular inflammation and mitigates ocular pathology during mouse uveitis. J Autoimmun 62:31-8
Yu, Cheng-Rong; Hayashi, Kozaburo; Lee, Yun Sang et al. (2015) Suppressor of cytokine signaling 1 (SOCS1) mitigates anterior uveitis and confers protection against ocular HSV-1 infection. Inflammation 38:555-65
Kim, Sung-Hye; Burton, Jenna; Yu, Cheng-Rong et al. (2015) Dual Function of the IRF8 Transcription Factor in Autoimmune Uveitis: Loss of IRF8 in T Cells Exacerbates Uveitis, Whereas Irf8 Deletion in the Retina Confers Protection. J Immunol 195:1480-8

Showing the most recent 10 out of 25 publications