Dopamine neurons promote learning by processing recent changes in reward values, such that reward may be maximized. However, such a flexible signal is not suitable for habitual behaviors that are sustained regardless of recent changes in reward outcome. We discovered a type of dopamine neuron in the monkey substantia nigra pars compacta (SNc) that retains past learned reward values stably. After reward values of visual objects are learned, these neurons continue to respond differentially to the objects, even when reward is not expected. Responses are strengthened by repeated learning and are evoked upon presentation of the objects long after learning is completed. These sustain-type dopamine neurons are confined to the caudal-lateral SNc and project to the caudate tail, which encodes long-term value memories of visual objects and guides gaze automatically to stably valued objects. This population of dopamine neurons thus selectively promotes learning and retention of habitual behavior. Among many objects around us, some of them are more salient than others (i.e., attract our attention automatically). Some objects may be inherently salient (e.g., brighter), but others may become salient by virtue of their ecological relevance through experience. However, the importance of ecological experience in guiding attention has not been studied systematically. To address this question, we let subjects (macaque monkeys) view a large number of complex objects (>300), each experienced repeatedly (>5 days) with rewarding, aversive or no outcome association (mere-perceptual exposure). Test of salience was done on separate days using free viewing with no outcome. We found that gaze was biased among the objects from the outset, affecting saccades to objects or fixations within objects. When the outcome was rewarding, gaze preference was stronger (i.e. positive) for objects with larger or equal but uncertain rewards. The effects of aversive outcomes were variable. Gaze preference was positive for some outcome associations (e.g. airpuff), but negative for others (e.g. time-out), possibly due to differences in threat levels. Finally, novel objects attracted gaze, but mere perceptual exposure of objects reduced their salience (learned negative salience). Our results show that, in primates, object salience is strongly influenced by previous ecological experience and is supported by a large memory capacity. Owing to such learned salience, the capacity to rapidly choose important objects can grow during the entire life to promote biological fitness. For most animals, survival depends on rapid detection of rewarding objects, but search for an object surrounded by many others is known to be difficult and time consuming. However, there is neuronal evidence for robust and rapid differentiation of objects based on their reward history in primates (Hikosaka, Kim, Yasuda, & Yamamoto, 2014). We hypothesized that such robust coding should support efficient search for high-value objects, similar to a pop-out mechanism. To test this hypothesis, we let subjects (n 4, macaque monkeys) view a large number of complex objects with consistently biased rewards with variable training durations (1, 5, or 30days). Following training, subjects searched for a high-value object (Good) among a variable number of low-value objects (Bad). Consistent with our hypothesis, we found that Good objects were accurately and quickly targeted, often by a single and direct saccade with a very short latency (,200 ms). The dependence of search times on display size reduced significantly with longer reward training, giving rise to a more efficient search (40 ms/item to 16 ms/item). This object-finding skill showed a large capacity for value-biased objects and was maintained in the long-term memory with no interference from reward learning with other objects. Such object-finding skill, and in particular its large capacity and long term retention, would be crucial for maximizing rewards and biological fitness throughout life where many objects are experienced continuously and/or intermittently.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAEY000415-14
Application #
9362381
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
14
Fiscal Year
2016
Total Cost
Indirect Cost
Name
U.S. National Eye Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Ghazizadeh, Ali; Hong, Simon; Hikosaka, Okihide (2018) Prefrontal Cortex Represents Long-Term Memory of Object Values for Months. Curr Biol 28:2206-2217.e5
Ghazizadeh, Ali; Griggs, Whitney; Leopold, David A et al. (2018) Temporal-prefrontal cortical network for discrimination of valuable objects in long-term memory. Proc Natl Acad Sci U S A 115:E2135-E2144
Griggs, Whitney S; Amita, Hidetoshi; Gopal, Atul et al. (2018) Visual Neurons in the Superior Colliculus Discriminate Many Objects by Their Historical Values. Front Neurosci 12:396
Maeda, Kazutaka; Kunimatsu, Jun; Hikosaka, Okihide (2018) Amygdala activity for the modulation of goal-directed behavior in emotional contexts. PLoS Biol 16:e2005339
Hikosaka, Okihide; Kim, Hyoung F; Amita, Hidetoshi et al. (2018) Direct and indirect pathways for choosing objects and actions. Eur J Neurosci :
Amita, Hidetoshi; Kim, Hyoung F; Smith, Mitchell K et al. (2018) Neuronal connections of direct and indirect pathways for stable value memory in caudal basal ganglia. Eur J Neurosci :
Kim, Hyoung F; Amita, Hidetoshi; Hikosaka, Okihide (2017) Indirect Pathway of Caudal Basal Ganglia for Rejection of Valueless Visual Objects. Neuron 94:920-930.e3
Hikosaka, Okihide; Ghazizadeh, Ali; Griggs, Whitney et al. (2017) Parallel basal ganglia circuits for decision making. J Neural Transm (Vienna) :
Griggs, Whitney S; Kim, Hyoung F; Ghazizadeh, Ali et al. (2017) Flexible and Stable Value Coding Areas in Caudate Head and Tail Receive Anatomically Distinct Cortical and Subcortical Inputs. Front Neuroanat 11:106
Yasuda, Masaharu; Hikosaka, Okihide (2017) To Wait or Not to Wait-Separate Mechanisms in the Oculomotor Circuit of Basal Ganglia. Front Neuroanat 11:35

Showing the most recent 10 out of 60 publications