--- The chief goal is to understand how the hormone vasopressin regulates water excretion by the kidney. Vasopressin's action is mediated through regulation of the molecular water channel aquaporin-2. Based on our studies a decade ago, it is now clear that vasopressin regulates aquaporin-2 in a time frame of seconds to minutes by altering the distribution of the water channel aquaporin-2 between the plasma membrane and the cytoplasm via vesicular trafficking. Trafficking of aquaporin-2 to the plasma membrane renders the cells permeable to water. We are presently using a systems approach to address the mechanisms involved. For this approach, we are integrating protein mass spectrometry, DNA microarrays, deep sequencing, mathematical modeling and physiological methods. --- There are two major areas of focus currently: 1) elucidation of the signaling network for vasopressin responses in the renal collecting duct;and 2) understanding how vasopressin regulates the abundance of the aquaporin-2 water channel and other proteins in the renal collecting duct. --- In the first area, we have already published a series of papers showing phosphoproteomic responses to vasopressin in the inner medullary collecting duct of rat, in the thick ascending limb of rat, and in cultured cortical collecting duct cells (see reference list). We have completed a dynamic study of the phosphoproteomic response to vasopressin using iTRAQ to track changes in thousands of individual phosphorylation sites over a 15 minute time period after vasopressin exposure. We have also completed work on new methodology for profiling individual protein kinases with regard to the sequence preferences in the target substrate proteins. The current thrust in the first area of focus is to map individual protein kinases to regulated phosphorylation targets in the collecting duct. --- In the second area of focus, we have published an article describing studies in which we have carried out global profiling of vasopressin-induced changes in both protein abundance and transcript abundance in the same collecting duct cells (Khositseth et al. see references). In general, there was a low correlation between these two measures for most proteins. In particular, a large numbers of proteins exhibited changes in protein abundance in response to vasopressin without corresponding changes in transcript abundances. The implication is that there is regulation of translation or protein stability for a large number of proteins. To follow this up, we have carried out global profiling of protein half lives using dynamic SILAC revealing that only a small fraction of post-translationally regulated proteins are regulated by altering half life including aquaporin-2 (Sandoval et al). We are now using SILAC to determine translation rates for all proteins across the proteome. An additional focus is on transcriptional regulation. We have carried out global profiling of vasopressin-induced nuclear translocation, identifying a relatively small number of transcription factors that move into the nucleus in response to vasopressin. Also, we are finalized a study to identify nuclear proteins that become phosphorylated in response to vasopressin to identify additional candidate proteins that may play roles in vasopressin-regulated transcription in collecting duct cells (Bolger et al.).

Project Start
Project End
Budget Start
Budget End
Support Year
27
Fiscal Year
2013
Total Cost
$1,933,408
Indirect Cost
Name
National Heart, Lung, and Blood Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Guillén-Gómez, Elena; Bardají-de-Quixano, Beatriz; Ferrer, Sílvia et al. (2018) Urinary Proteome Analysis Identified Neprilysin and VCAM as Proteins Involved in Diabetic Nephropathy. J Diabetes Res 2018:6165303
Saethang, Thammakorn; Hodge, Kenneth; Kimkong, Ingorn et al. (2018) AbDesigner3D: a structure-guided tool for peptide-based antibody production. Bioinformatics 34:2158-2160
Briggs, Josephine; Palevsky, Paul; Knepper, Mark (2018) JASN this Month: Something Old, Something New. J Am Soc Nephrol 29:1345-1346
Chen, Lihe; Lee, Jae Wook; Chou, Chung-Lin et al. (2018) Reply to Edemir: Physiological regulation and single-cell RNA sequencing. Proc Natl Acad Sci U S A 115:E351-E352
Hyndman, Kelly A; Yang, Chin-Rang; Jung, Hyun Jun et al. (2018) Proteomic determination of the lysine acetylome and phosphoproteome in the rat native inner medullary collecting duct. Physiol Genomics 50:669-679
Jung, Hyun Jun; Raghuram, Viswanathan; Lee, Jae Wook et al. (2018) Genome-Wide Mapping of DNA Accessibility and Binding Sites for CREB and C/EBP? in Vasopressin-Sensitive Collecting Duct Cells. J Am Soc Nephrol 29:1490-1500
Lee, Jae Wook; Alsady, Mohammad; Chou, Chung-Lin et al. (2018) Single-tubule RNA-Seq uncovers signaling mechanisms that defend against hyponatremia in SIADH. Kidney Int 93:128-146
Gilmer, Gabrielle G; Deshpande, Venkatesh; Chou, Chung-Ling et al. (2018) Flow Resistance along the Rat Renal Tubule. Am J Physiol Renal Physiol :
Rinschen, Markus M; Limbutara, Kavee; Knepper, Mark A et al. (2018) From Molecules to Mechanisms: Functional Proteomics and Its Application to Renal Tubule Physiology. Physiol Rev 98:2571-2606
Chou, Chung-Lin; Hwang, Gloria; Hageman, Daniel J et al. (2018) Identification of UT-A1- and AQP2-interacting proteins in rat inner medullary collecting duct. Am J Physiol Cell Physiol 314:C99-C117

Showing the most recent 10 out of 110 publications