The rapidly growing database of completely sequenced genomes of bacteria, archaea and eukaryotes (over 900 genomes available by the middle of 2009 and many more in progress) creates both new opportunities and new challenges for genome research. During the last year, we performed several studies that took advantage of the genomic information to establish fundamental principles of genome evolution and function. In particular, we performed a comprehensive comparative analysis of a 'forest'of 6,901 phylogenetic trees for prokaryotic genes revealed a consistent phylogenetic signal, particularly among 102 nearly universal trees, despite high levels of topological inconsistency, probably due to horizontal gene transfer. Horizontal transfers seemed to be distributed randomly and did not obscure the central trend. The nearly universal trees were topologically similar to numerous other trees. Thus, the nearly universal trees might reflect a significant central tendency, although they cannot represent the forest completely. However, topological consistency was seen mostly at shallow tree depths and abruptly dropped at the level of the radiation of archaeal and bacterial phyla, suggesting that early phases of evolution could be non-tree-like (Biological Big Bang). Simulations of evolution under compressed cladogenesis or Biological Big Bang yielded a better fit to the observed dependence between tree inconsistency and phylogenetic depth for the compressed cladogenesis model.Horizontal gene transfer is pervasive among prokaryotes: very few gene trees are fully consistent, making the original tree of life concept obsolete. A central trend that most probably represents vertical inheritance is discernible throughout the evolution of archaea and bacteria, although compressed cladogenesis complicates unambiguous resolution of the relationships between the major archaeal and bacterial clades. Additionally, in order to explore microevolutionary trends in bacteria and archaea, we constructed a data set of 41 alignable tight genome clusters (ATGCs). We show that the ratio of the medians of nonsynonymous to synonymous substitution rates (dN/dS) that is used as a measure of the purifying selection pressure on protein sequences is a stable characteristic of the ATGCs. In agreement with previous findings, parasitic bacteria, notwithstanding the sometimes dramatic genome shrinkage caused by gene loss, are typically subjected to relatively weak purifying selection, presumably owing to relatively small effective population sizes and frequent bottlenecks. However, no evidence of genome streamlining caused by strong selective pressure was found in any of the ATGCs. On the contrary, a significant positive correlation between the genome size, as well as gene size, and selective pressure was observed, although a variety of free-living prokaryotes with very close selective pressures span nearly the entire range of genome sizes. In addition, we examined the connections between the sequence evolution rate and other genomic features. Although gene order changes much faster than protein sequences during the evolution of prokaryotes, a strong positive correlation was observed between the """"""""rearrangement distance"""""""" and the amino acid distance, suggesting that at least some of the events leading to genome rearrangement are subjected to the same type of selective constraints as the evolution of amino acid sequences.

Project Start
Project End
Budget Start
Budget End
Support Year
14
Fiscal Year
2009
Total Cost
$1,953,408
Indirect Cost
Name
National Library of Medicine
Department
Type
DUNS #
City
State
Country
Zip Code
Krupovic, Mart; Cvirkaite-Krupovic, Virginija; Iranzo, Jaime et al. (2018) Viruses of archaea: Structural, functional, environmental and evolutionary genomics. Virus Res 244:181-193
Yutin, Natalya; Makarova, Kira S; Gussow, Ayal B et al. (2018) Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat Microbiol 3:38-46
He, Fei; Bhoobalan-Chitty, Yuvaraj; Van, Lan B et al. (2018) Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. Nat Microbiol 3:461-469
Shmakov, Sergey A; Makarova, Kira S; Wolf, Yuri I et al. (2018) Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis. Proc Natl Acad Sci U S A 115:E5307-E5316
Pushkarev, Alina; Inoue, Keiichi; Larom, Shirley et al. (2018) A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558:595-599
Amarasinghe, Gaya K; Aréchiga Ceballos, Nidia G; Banyard, Ashley C et al. (2018) Taxonomy of the order Mononegavirales: update 2018. Arch Virol 163:2283-2294
Yutin, Natalya; Bäckström, Disa; Ettema, Thijs J G et al. (2018) Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis. Virol J 15:67
Ferrer, Manuel; Sorokin, Dimitry Y; Wolf, Yuri I et al. (2018) Proteomic Analysis of Methanonatronarchaeum thermophilum AMET1, a Representative of a Putative New Class of Euryarchaeota, ""Methanonatronarchaeia"". Genes (Basel) 9:
Galperin, Michael Y; Makarova, Kira S; Wolf, Yuri I et al. (2018) Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems. J Bacteriol 200:
Sorokin, Dimitry Y; Makarova, Kira S; Abbas, Ben et al. (2017) Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol 2:17081

Showing the most recent 10 out of 196 publications