A typical scene contains many different objects that compete for neural representation due to the limited processing capacity of the visual system. At the neural level, competition among multiple stimuli is evidenced by the mutual suppression of their visually evoked responses and occurs most strongly at the level of the receptive field. The competition among multiple objects can be biased by both bottom-up sensory-driven mechanisms, such as stimulus salience, and top-down influences, such as selective attention. Although the competition among stimuli for representation is ultimately resolved within visual cortex, the source of top-down biasing signals likely derives from a distributed network of areas in frontal and parietal cortex. Recently, we reported that monkeys with lesions of prefrontal cortex (PFC) are selectively impaired in their ability to switch top-down control. In the past year, we asked whether monkeys with lesions of posterior parietal cortex (PPC) would show similar or different behavioral effects. Our results showed that, unlike monkeys with PFC lesions, those with PPC lesions are not selectively impaired in their ability to switch top-down control. Rather, they have a selective impairment in spatially locating targets they are required to discriminate. Thus, the PFC plays a critical role in the ability to switch attentional control on the basis of changing task demands, whereas the PPC plays a critical role in allocating attentional resources to behaviorally relevant spatial locations. These findings are being prepared for publication. During the past year, we also aimed to better characterize the nature of distractibility in ADHD by testing hypotheses about whether distractibility arises from increased sensory-driven interference or from inefficient top-down control. We employed an attentional filtering paradigm in which discrimination difficulty and distractor salience were parametrically manipulated. Increased discrimination difficulty should add to the load of top-down processes, whereas increased distractor salience should result in stronger sensory interference. We found a striking interaction of discrimination difficulty and distractor salience: For difficult discriminations, ADHD children filtered distractors as efficiently as healthy children and adults, and all groups were slower to respond with high vs. low salience distractors. In contrast, for easy discriminations, ADHD children were much slower and made more errors than healthy children and adults. For easy discriminations, healthy children and adults filtered out high salience distractors as easily as low salience distractors, but ADHD children were slower to respond on trials with low salience distractors than they did on trials with high salience distractors. The fact that ADHD children exhibit efficient attentional filtering when task demands are high, but show deficient and atypical distractor filtering under low task demands suggests that filtering mechanisms remain intact in these children but the trigger for activating attention is selectively impaired. There is conflicting evidence in the literature regarding the role played by attention in perceptual learning. To further examine this issue, we independently manipulated exogenous (involuntary) and endogenous (voluntary) attention and measured the rate of perceptual learning of oriented stimuli presented in different quadrants of the visual field. In this way, we could track learning at attended, divided-attended, and unattended locations. We also measured contrast thresholds of the stimuli before and after training. Our results showed that, for both exogenous and endogenous attention, accuracy in performing the orientation discrimination improved to a greater extent at attended than at unattended locations. Importantly, however, only exogenous attention resulted in improved contrast thresholds. These findings suggest that both exogenous and endogenous attention facilitate perceptual learning, but that these two types of attention may be mediated by different neural mechanisms. A paper reporting these findings is currently in preparation. Retinotopic selectivity, as measured by fMRI activity patterns that vary consistently with the location of visual stimuli, has been documented in many human brain regions, notably occipital visual cortex and frontal and parietal regions associated with endogenous (voluntary) attention. We hypothesized that retinotopic selectivity also exists in regions active during exogenous (involuntary) attention. To test this hypothesis, we acquired fMRI data while subjects maintained passive fixation on a central cross. At unpredictable time intervals, stimuli consisting of an array of rapidly expanding circles appeared at one of six spatial locations. Positive fMRI activations to the stimulus presentations were identified in multiple brain regions including the temporoparietal junction (TPJ), a region previously implicated in exogenous attention. The TPJ activations did not appear to be organized as a map across the cortical surface. However, multivoxel pattern recognition analysis successfully predicted fMRI responses to every one of the fifteen stimulus location pairs, demonstrating that patterns of activity in TPJ depend on the retinotopic stimulus location. This is the first demonstration that spatial locations are represented in a brain region associated with exogenous attention.

Project Start
Project End
Budget Start
Budget End
Support Year
30
Fiscal Year
2010
Total Cost
$1,251,733
Indirect Cost
Name
U.S. National Institute of Mental Health
Department
Type
DUNS #
City
State
Country
Zip Code
Farias, Mariana F; Ungerleider, Leslie G; Pereira, Sandra S et al. (2018) Time course of cytochrome oxidase blob plasticity in the primary visual cortex of adult monkeys after retinal laser lesions. J Comp Neurol :
Zhang, Xilin; Mlynaryk, Nicole; Ahmed, Sara et al. (2018) The role of inferior frontal junction in controlling the spatially global effect of feature-based attention in human visual areas. PLoS Biol 16:e2005399
Pitcher, David; Japee, Shruti; Rauth, Lionel et al. (2017) The Superior Temporal Sulcus Is Causally Connected to the Amygdala: A Combined TBS-fMRI Study. J Neurosci 37:1156-1161
Taubert, Jessica; Wardle, Susan G; Flessert, Molly et al. (2017) Face Pareidolia in the Rhesus Monkey. Curr Biol 27:2505-2509.e2
Zhang, Xilin; Mlynaryk, Nicole; Japee, Shruti et al. (2017) Attentional selection of multiple objects in the human visual system. Neuroimage 163:231-243
Kaskan, P M; Costa, V D; Eaton, H P et al. (2016) Learned Value Shapes Responses to Objects in Frontal and Ventral Stream Networks in Macaque Monkeys. Cereb Cortex :
Zhang, Xilin; Japee, Shruti; Safiullah, Zaid et al. (2016) A Normalization Framework for Emotional Attention. PLoS Biol 14:e1002578
Bell, Andrew H; Summerfield, Christopher; Morin, Elyse L et al. (2016) Encoding of Stimulus Probability in Macaque Inferior Temporal Cortex. Curr Biol 26:2280-90
Zhang, Hui; Japee, Shruti; Nolan, Rachel et al. (2016) Face-selective regions differ in their ability to classify facial expressions. Neuroimage 130:77-90
Gattass, Ricardo; Lima, Bruss; Soares, Juliana G M et al. (2015) Controversies about the visual areas located at the anterior border of area V2 in primates. Vis Neurosci 32:E019

Showing the most recent 10 out of 33 publications