Background: Cortical reorganization occurs in the adult central nervous system. Plasticity contributes to various forms of human behavior including motor learning and memory formation, consolidation, reconsolidation and short and long term retention. It is very important to understand the role of these different behavioral processes and of the mechanisms underlying these various forms of human plasticity during skill acquisition.

 Findings this year: Several important advances have been implemented in this period on our understanding of mechanisms of human motor neuroplasticity and in the development of strategies to enhance it in healthy subjects. Most recently we advanced out understanding of reconsolidation in the human motor cortex by demonstrating that primary cortical processing in the human brain interacting with pre-existent reactivated memory traces is critical for successful modification of the existing related memory. In relation to the influence of reward on motor learning, We found that training under rewarded conditions is more effective than training under punished or neutral conditions in eliciting lasting motor learning, an advantage driven by offline memory gains that persist over time. This finding may impact the way in which training protocols are designed in education but also in neurorehabilitation after brain lesions like stroke or traumatic brain injury. We have also probed for hemispheric specialization in the effects of transcranial direct current stimulation (tDCS) applied over the primary motor cortex (M1) on motor learning. 6 groups trained for 3 sessions on a visually-guided sequential pinch force modulation task with their right or left hand, and received right M1, left M1, or sham tDCS. A linear mixed model analysis for motor skill showed a significant main effect for stimulation group (left M1, right M1, sham), but not for hand (right, left) or their interaction. Left M1 tDCS induced significantly greater skill learning than sham when hand data were combined, a result consistent with the hypothesized left hemisphere specialization for motor skill learning, but also with possible increased left M1 responsiveness to tDCS. The unihemispheric montage effect size was half that of the more common montage, and subsequent power analysis indicated that 75 subjects per group would be needed to detect differences seen with only 12 subjects with the customary bihemispheric montage.
Interestingly, despite its increasing use in experimental and clinical settings, the cellular and molecular mechanisms underlying transcranial direct current stimulation (tDCS) remain unknown. Anodal tDCS applied to human motor cortex (M1) improves motor skill learning, suggesting a role for synaptic plasticity. In one study, we demonstrated in mouse M1 slices that DCS induces a long-lasting synaptic potentiation (DCS-LTP), which is polarity-specific, NMDA-receptor dependent and requires coupling of DCS with repetitive low-frequency synaptic activation (LFS). BDNF is a key mediator of this phenomenon, as combined DCS and LFS enhance BDNF-secretion and TrkB-activation, and DCS-LTP is absent in BDNF and TrkB mutant mice. Moreover, the BDNF val66met polymorphism known to partially affect activity-dependent BDNF secretion impairs motor skill acquisition in humans and mice. Motor learning is enhanced by anodal tDCS, as long as activity-dependent BDNF secretion is in place. We proposed that tDCS may improve motor skill learning through augmentation of synaptic plasticity that requires BDNF-secretion and TrkB-activation within M1. One important area of research lies in the identification of the white matter microstructural correlates of superior long-term skill gained under randomized rather than blocked practice schedules. In one study relating diffusion weighted imaging with learning, we demonstrated that randomized practice schedules improve long-term implicit skill more than grouped practice schedules, and more importantly from a mechanistic point of view, that the superior skill acquired through randomized practice can be related to white matter microstructure in the sensorimotor corticostriatal network.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Zip Code
Dayan, Eran; López-Alonso, Virginia; Liew, Sook-Lei et al. (2018) Distributed cortical structural properties contribute to motor cortical excitability and inhibition. Brain Struct Funct :
Lopez-Alonso, Virginia; Liew, Sook-Lei; Fernández Del Olmo, Miguel et al. (2018) A Preliminary Comparison of Motor Learning Across Different Non-invasive Brain Stimulation Paradigms Shows No Consistent Modulations. Front Neurosci 12:253
Gabitov, Ella; Boutin, Arnaud; Pinsard, Basile et al. (2017) Re-stepping into the same river: competition problem rather than a reconsolidation failure in an established motor skill. Sci Rep 7:9406
Buch, Ethan R; Santarnecchi, Emiliano; Antal, Andrea et al. (2017) Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clin Neurophysiol 128:589-603
Buch, Ethan R; Liew, Sook-Lei; Cohen, Leonardo G (2017) Plasticity of Sensorimotor Networks: Multiple Overlapping Mechanisms. Neuroscientist 23:185-196
Antal, A; Alekseichuk, I; Bikson, M et al. (2017) Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol 128:1774-1809
Xu, Benjamin; Sandrini, Marco; Wang, Wen-Tung et al. (2016) PreSMA stimulation changes task-free functional connectivity in the fronto-basal-ganglia that correlates with response inhibition efficiency. Hum Brain Mapp 37:3236-49
Buch, Ethan R; Rizk, Sviatlana; Nicolo, Pierre et al. (2016) Predicting motor improvement after stroke with clinical assessment and diffusion tensor imaging. Neurology 86:1924-5
Saposnik, Gustavo; Cohen, Leonardo G; Mamdani, Muhammad et al. (2016) Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol 15:1019-27
Dayan, Eran; Thompson, Ryan M; Buch, Ethan R et al. (2016) 3D-printed head models for navigated non-invasive brain stimulation. Clin Neurophysiol 127:3341-2

Showing the most recent 10 out of 88 publications