The novel coronavirus (2019-nCoV) outbreak has rapidly spread from its beginning in Wuhan China. Currently, people have been infected on all continents except Antarctica. 2019-nCoV has some similarity to two other coronavirus outbreaks (SARS and MERS). Despite intensive study of SARS and MERS, we still lack a fundamental understanding of coronavirus behavior in the environment. Most importantly, we do not know how coronavirus spreads and how long it remains infective when exposed to sunlight. The goal of this RAPID research project is to address these questions to better predict transport. A secondary goal of this research project is to determine whether virus monitoring in wastewater treatment facilities can be used to catch outbreaks early. This will be achieved by monitoring coronavirus dynamics in wastewater treatment plants in the San Francisco Bay Area. The project team includes researchers with complimentary expertise on coronavirus transfer, inactivation, and detection. Successful completion of this research will better prepare scientists, engineers, and public health officials for future coronavirus outbreaks. Societal benefits include understanding coronavirus transmission in communities to decrease the time necessary to identify outbreaks to protect public health and national security.

A novel coronavirus (2019-nCoV) has recently emerged from Wuhan China and its spread is causing international concern. This outbreak follows two other coronavirus outbreaks SARS and MERS. The initial cases of the SARS coronavirus outbreak spread via aerosolized fecal particles through the air ducts of the apartment complex. Early reports of 2019-nCoV suggest it too is excreted in feces. Despite intensive study of these past outbreaks, we still lack a fundamental understanding of enveloped virus particle transport in air and water infrastructure and their inactivation potential from solar radiation exposure. This information is critical to control transmission and predict persistence. A second important question is whether monitoring of viruses in wastewater treatment facilities can be used to catch virus circulation early in community outbreaks. The specific objectives of this project are to characterize how enveloped viruses are transferred from surfaces to skin, how coronaviruses are inactivated by solar and UV radiation, and by monitoring coronavirus dynamics in wastewater treatment plants in the San Francisco Bay Area. The project team includes researchers with complimentary expertise on virus transfer from skin to surfaces, coronavirus detection methods, and viral photoinactivation. The work will be performed at the Codiga Water Resource Recovery Center in Santa Clara County where two of the initial 2019-nCoV cases have been observed in the USA. Results from this research will better prepare scientists, engineers, and public health officials for future coronavirus outbreaks. It will provide critical information on endemic coronavirus circulation and provide a framework for capturing the outbreak dynamics of a novel virus in a community. Further, the enveloped virus transfer study will help scientists understand if and how the transfer of enveloped viruses differs from non-enveloped viruses. Broader benefits to society include understanding when and how transmission may occur in communities; information that is critical to decreasing the time necessary to identify viral disease outbreaks to protect public health and national security.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Project Start
Project End
Budget Start
2020-03-15
Budget End
2022-02-28
Support Year
Fiscal Year
2020
Total Cost
$130,000
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
City
Stanford
State
CA
Country
United States
Zip Code
94305