RUI: Enabling Rational Design of Smart Interfaces Incorporating Metal-Organic Coordinated Assemblies (CHE-1508244) Mary E. Anderson, Hope College

Public Abstract Metal-organic frameworks (MOFs) are crystalline, porous materials with extremely high surface areas that exhibit great potential for chemical sensing, reaction catalysis, and gas storage. For many of these applications, the incorporation of MOF thin films grown directly on supporting materials is required. To effectively fabricate devices with smart interfaces that harness the properties of these MOF materials, it is crucial to understand the fundamentals of film formation. This research systematically investigates thin film MOF growth and develops design rules for low-energy processing techniques on a variety of technologically-relevant substrates. These design rules, for tailoring film structure and composition, are utilized 1) to tune the optical, electrical, and mechanical properties of the film and 2) to develop fabrication techniques that integrate MOF thin films into cutting-edge technologies for chemical sensing and harvesting solar energy. Undergraduate students are actively engaged in all aspects of the research, providing them with experience in the interdisciplinary areas of materials chemistry, surface science, and modern analytical instrumentation.

Technical Abstract

With this award the Macromolecular, Supramolecular and Nanchemistry Program of the NSF Chemistry Division supports the research of Dr. Anderson at Hope College to investigate the formation of surface-anchored metal-organic frameworks (SurMOF) for integration directly into device architectures for chemical sensing and photonic applications. Film formation is studied for different systems with incrementally increasing complexity (i.e. HKUST-1, MOF-14, MOF-5, IRMOF-3). Effects of deposition variables such as temperature, time, and deposition methods (i.e. layer-by-layer, co-deposition, seeded deposition) are investigated. Studies are extended to understand deposition on different substrates of technological relevance, such as oxide materials (i.e. SiO2, ITO, Al2O3) and flexible polymeric materials. Rational design rules for growth initiation as well as inhibition are determined. Scanning probe microscopy (SPM) and surface-specific spectroscopies (i.e. ellipsometry, FT-IR) are used to characterize SurMOF film growth to determine the effect of deposition conditions with particular focus on foundational layers forming at the substrate-film interface. Mechanical, electrical, and optical properties of films are evaluated using advanced SPM modes (i.e. quantitative nanomechanical mapping, conductive probe), electrochemistry (i.e. cyclic voltammetry, chronocoulometry), and spectroelectrochemical characterization. By following developed design rules, understanding material properties, and employing membrane-templating techniques, this research integrates SurMOF films as smart interfaces into test-bed structures fabricated for chemical sensing and solar energy harvesting.

Agency
National Science Foundation (NSF)
Institute
Division of Chemistry (CHE)
Type
Standard Grant (Standard)
Application #
1850800
Program Officer
George Janini
Project Start
Project End
Budget Start
2018-08-15
Budget End
2019-05-31
Support Year
Fiscal Year
2018
Total Cost
$48,020
Indirect Cost
Name
Furman University
Department
Type
DUNS #
City
Greenville
State
SC
Country
United States
Zip Code
29613