A major feature of biological science in the 21st Century will be its transition from a phenomenological and descriptive discipline to a quantitative and predictive one. Revolutionary opportunities have emerged for mathematically driven advances in biological research. Experimental exploration of self-organizing biomolecular systems, such as HIV viruses, molecular motors and proteins in Alzheimer's disease, has been a dominating driven force in scientific discovery and innovation in the past few decades. However, the emergence of complexity in self-organizing biological systems poses fundamental challenges to their quantitative description because of the excessively high dimensionality. This Focused Research Group (FRG) will provide a platform, led by leading researchers from Michigan State University, University of Wisconsin-Madison and Pennsylvania State University, who will synergistically merge their expertise in theoretical modeling, scientific computing and mathematical analysis, for quantitative descriptions of biomolecular systems. The research addresses grand challenges in the structure, function and dynamics of self-organizing biomolecular systems due to exceptionally massive data sets. These challenges are tackled through the introduction of new variational multiscale models, which reduces the dimensionality and number of degrees of freedom by a macroscopic continuum description of the aquatic/membrane environment, and a microscopic discrete description of biomolecules. Additionally, to further reduce the dimensionality of excessively large biomolecular systems, the investigators introduce a coarse-grained approach based on the density cluster dynamics which extracts stable manifolds in molecular dynamics simulations. This FRG project offers innovative new approaches to the massive data management, dimensionality reduction, computer simulation, theoretical modeling and mathematical analysis of biomolecular systems.

This project is a timely effort to promote the quantitative transition of biological science, which will lead to emerging new fields in both mathematical and biological sciences. In particular, the proposed effort will significantly strengthen the leading role that the U.S. researchers can play in mathematical molecular biosciences by aggressively pursuing cutting-edge research and collaboratively training a new generation of mathematicians in this emerging interdisciplinary field. Three annual workshops and international meeting will be held in Michigan State (Year 1), Wisconsin (Year 2) and Penn State (Year 3) to strengthen the collaboration and extend the societal impact.

National Science Foundation (NSF)
Division of Mathematical Sciences (DMS)
Standard Grant (Standard)
Application #
Program Officer
Mary Ann Horn
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Michigan State University
East Lansing
United States
Zip Code