This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The goal of the Type 1 Diabetes Genetics Consortium is to organize international efforts to identify genes that determine an individual's risk of type 1 diabetes. 1. To ascertain, study and establish a renewable source of DNA on 3000 families with at least two type 1 diabetic children for studies to map genes that affect the genetic risk for type 1 diabetes (affected sib-pair families); 2. To create a database for the scientific community with clinical, genetic (HLA, CTLA4, genome screen), and medical history information that would facilitate the search for type 1 diabetes susceptibility genes; 3. To provide a centralized DNA repository to allow targeted studies of genetic structure and function for type 1 diabetes, its complications, and other autoimmune diseases; 4. To evaluate opportunities to extend the results of research to develop methods of risk prediction, prevention and therapy in the area of type 1 diabetes, its complications, and other autoimmune diseases.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
General Clinical Research Centers Program (M01)
Project #
5M01RR018535-08
Application #
8167230
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2010-04-01
Project End
2011-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
8
Fiscal Year
2010
Total Cost
$423
Indirect Cost
Name
Feinstein Institute for Medical Research
Department
Type
DUNS #
110565913
City
Manhasset
State
NY
Country
United States
Zip Code
11030
DeRosse, Pamela; Nitzburg, George C; Blair, Melanie et al. (2018) Dimensional symptom severity and global cognitive function predict subjective quality of life in patients with schizophrenia and healthy adults. Schizophr Res 195:385-390
Lyall, A E; Pasternak, O; Robinson, D G et al. (2018) Greater extracellular free-water in first-episode psychosis predicts better neurocognitive functioning. Mol Psychiatry 23:701-707
Tarnawski, Laura; Reardon, Colin; Caravaca, April S et al. (2018) Adenylyl Cyclase 6 Mediates Inhibition of TNF in the Inflammatory Reflex. Front Immunol 9:2648
Shafritz, Keith M; Ikuta, Toshikazu; Greene, Allison et al. (2018) Frontal lobe functioning during a simple response conflict task in first-episode psychosis and its relationship to treatment response. Brain Imaging Behav :
Damle, Nishad R; Ikuta, Toshikazu; John, Majnu et al. (2017) Relationship among interthalamic adhesion size, thalamic anatomy and neuropsychological functions in healthy volunteers. Brain Struct Funct 222:2183-2192
McNamara, Robert K; Szeszko, Philip R; Smesny, Stefan et al. (2017) Polyunsaturated fatty acid biostatus, phospholipase A2 activity and brain white matter microstructure across adolescence. Neuroscience 343:423-433
Kafantaris, Vivian; Spritzer, Linda; Doshi, Vishal et al. (2017) Changes in white matter microstructure predict lithium response in adolescents with bipolar disorder. Bipolar Disord 19:587-594
DeRosse, Pamela; Ikuta, Toshikazu; Karlsgodt, Katherine H et al. (2017) White Matter Abnormalities Associated With Subsyndromal Psychotic-Like Symptoms Predict Later Social Competence in Children and Adolescents. Schizophr Bull 43:152-159
Schwehm, Andrew; Robinson, Delbert G; Gallego, Juan A et al. (2016) Age and Sex Effects on White Matter Tracts in Psychosis from Adolescence through Middle Adulthood. Neuropsychopharmacology 41:2473-80
Cui, X; Zhang, L; Magli, A R et al. (2016) Cytoplasmic myosin-exposed apoptotic cells appear with caspase-3 activation and enhance CLL cell viability. Leukemia 30:74-85

Showing the most recent 10 out of 230 publications