The emerging concept of vascular normalization has changed the paradigm of antiangiogenic treatment in cancer (Jain, Nature Medicine, 2001;Jain, Science, 2005;Willett, Nature Medicine, 2004) and raised many critical, yet unanswered, questions concerning tumor vessel biology. The studies in this Project address two critical questions: 1) how do antiangiogenic agents currently in clinical trials affect delivery of chemotherapeutic agents and 2) which surrogate markers can be used to identify the normalization of the tumor vasculature. To answer these questions we will use our pre-clinical models: breast tumor (MCalV, Tong, Cancer Research, 2004) in a mammary fat pad chamber, and glioma (U87MG, Winkler, Cancer Cell, 2004) in a cranial window.
In Aim 1, we will compare the normalization of blood vessels after treatment with anti-VEGF antibody (B20-4.1, the mouse equivalent of bevacizumab), anti-VEGFR2 antibody (DC101), or three tyrosine kinase inhibitors, all currently in clinical trials. Specifically,we will quantify the enhancement of transvascular pressure gradients and uniformity of drug delivery.
In Aim 2, we will examine vascular basement membrane degradation during vascular normalization by assessing matrix metalloproteinase and tissue inhibitor metalloproteinase levels and their activities in tissue. We will examine the potential ofmatrix metalloproteinases and their degradation products as blood-borne surrogate .markers for vascular normalization.
In Aim 3, we will consider the fate of """"""""excess"""""""" endothelial cells from tumor vessels pruned or reduced in diameter by antiangiogenic therapy. We hypothesize that many of these cells enter the blood stream and are non-viable. We propose to detect them in peripheral blood and use them as a surrogate marker to evaluate vascular normalization during antiangiogenic therapy. The data obtained in this project will complement those obtained in Project 1 and will facilitate rapid translation into the clinic. If one surrogate marker evaluated in this Project is successful, it will help to advance the combined use of antiangiogenic and cytotoxic therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA080124-09
Application #
7874640
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2009-05-01
Budget End
2010-04-30
Support Year
9
Fiscal Year
2009
Total Cost
$337,776
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Khandekar, Melin J; Jain, Rakesh (2018) Smooth sailing for immunotherapy for unresectable stage III non-small cell lung cancer: the PACIFIC study. Transl Cancer Res 7:S16-S20
Stylianopoulos, Triantafyllos; Munn, Lance L; Jain, Rakesh K (2018) Reengineering the Tumor Vasculature: Improving Drug Delivery and Efficacy. Trends Cancer 4:258-259
Grassberger, Clemens; Hong, Theodore S; Hato, Tai et al. (2018) Differential Association Between Circulating Lymphocyte Populations With Outcome After Radiation Therapy in Subtypes of Liver Cancer. Int J Radiat Oncol Biol Phys 101:1222-1225
Zhang, Na; Chen, Jie; Ferraro, Gino B et al. (2018) Anti-VEGF treatment improves neurological function in tumors of the nervous system. Exp Neurol 299:326-333
Aoki, Shuichi; Cobbold, Mark; Zhu, Andrew X et al. (2018) Can smart nanomedicine deliver effective targeted cytotoxic treatments to hepatocellular carcinomas while reducing the liver damage? Hepatology 67:826-828
Li, Wende; Liu, Yujiao; Yang, Weining et al. (2018) MicroRNA-378 enhances radiation response in ectopic and orthotopic implantation models of glioblastoma. J Neurooncol 136:63-71
Griveau, Amelie; Seano, Giorgio; Shelton, Samuel J et al. (2018) A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment. Cancer Cell 33:874-889.e7
Stylianopoulos, Triantafyllos; Munn, Lance L; Jain, Rakesh K (2018) Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends Cancer 4:292-319
Incio, Joao; Ligibel, Jennifer A; McManus, Daniel T et al. (2018) Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med 10:
Sung, Yun-Chieh; Liu, Ya-Chi; Chao, Po-Han et al. (2018) Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics 8:894-905

Showing the most recent 10 out of 320 publications