In this project we will seek to resolve the origin of differences in tonic and phasic response output from the hair cell and cupula of the vestibular system. Specifically, we will determine if differences in encoded vestibular output is attributable to: (1) cupula motion and regional variation in hair cell stereociliary deflection; (2) afferents that are differentially (numerically and/or regionally) innervated by hair cells; and/or (3) that afferents may respond differentially to a transmitter quantum. This will be accomplished through a coordinated interdisciplinary effort encompassing simulation studies described throughout this program project application. Silver's laboratory will focus upon the acquisition and analysis of images of sterociliary and cupular movements during head displacement, by developing a digital video light microscopic method for directly observation, analysis and relating movements of sub-cellular, cellular and supra-cellular structures in the vestibular end organ (VEO) related with vestibular function, using the toadfish (Opsanus tau) labyrinth as the model system, Reeves' group will focus upon advanced analytical imaging methods. High quality imagery of the performance of VEO components is needed to establish the structure function relationships of these essential mechano-electrical transducers, especially in light of the advances made by the collaborating laboratories in hair cell electrophysiology and computational modeling. In both cases, detailed information about the actual motions and fine mechanical displacements of these transducers obtained on-line during and actual experiment is lacking. Recently, Silver, in collaboration with Highstein, accomplished direct video light microscopic imaging of individual stereocilia in tact labyrinths. To achieve our project goals we will: (1) develop a light microscope capable of video observation and recording of sterociliary and cupular movements in situ in concert with concurrent electrophysiological recordings; (2) describe the sub- micrometer displacements of these structures during VEO movements via computational representations of image data (i.e., processed imagery, isosurfaces and isovolumes) to aid in testing for the parity correspondence among actual VEO movements (this work), electrophysiological performance and kinetic simulations. Integration of the information developed will facilitate assessment of normal and dysfunctional VEO performance in normal, and microgravity environments.

Project Start
2002-04-01
Project End
2003-03-31
Budget Start
Budget End
Support Year
8
Fiscal Year
2002
Total Cost
$163,278
Indirect Cost
Name
Washington University
Department
Type
DUNS #
062761671
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Boyle, Richard; Ehsanian, Reza; Mofrad, Alireza et al. (2018) Morphology of the utricular otolith organ in the toadfish, Opsanus tau. J Comp Neurol 526:1571-1588
Boyle, Richard; Rabbitt, Richard D; Highstein, Stephen M (2009) Efferent control of hair cell and afferent responses in the semicircular canals. J Neurophysiol 102:1513-25
Ghanem, Tamer A; Breneman, Kathryn D; Rabbitt, Richard D et al. (2008) Ionic composition of endolymph and perilymph in the inner ear of the oyster toadfish, Opsanus tau. Biol Bull 214:83-90
Mensinger, A F; Tubbs, M E (2006) Effects of temperature and diet on the growth rate of year 0 oyster toadfish, Opsanus tau. Biol Bull 210:64-71
Carrera, Ivan; Sueiro, Catalina; Molist, Pilar et al. (2006) GABAergic system of the pineal organ of an elasmobranch (Scyliorhinus canicula): a developmental immunocytochemical study. Cell Tissue Res 323:273-81
Rabbitt, R D; Boyle, R; Holstein, G R et al. (2005) Hair-cell versus afferent adaptation in the semicircular canals. J Neurophysiol 93:424-36
Holstein, G R; Martinelli, G P; Nicolae, R A et al. (2005) Synapsin-like immunoreactivity is present in hair cells and efferent terminals of the toadfish crista ampullaris. Exp Brain Res 162:287-92
Highstein, Stephen M; Rabbitt, Richard D; Holstein, Gay R et al. (2005) Determinants of spatial and temporal coding by semicircular canal afferents. J Neurophysiol 93:2359-70
Holstein, G R; Martinelli, G P; Boyle, R et al. (2004) Ultrastructural observations of efferent terminals in the crista Ampullaris of the toadfish, opsanus tau. Exp Brain Res 155:265-73
Holstein, G R; Martinelli, G P; Boyle, R et al. (2004) Ultrastructural observations of efferent terminals in the crista ampullaris of the toadfish, Opsanus tau. Exp Brain Res 157:128-36

Showing the most recent 10 out of 36 publications