The broad objective of this project is an advanced understanding of molecular processes by which the immature nephron is protected from both oxygen deprivation and ischemic insults. Two classes of genes which are induced by ischemia or hypoxia have been shown to be over expressed constitutively in the immature kidney, the heat shock response (HSR) and the hypoxia responsive pathway (HRP). Each of these ubiquitous biological systems may play a fundamental role in the innate tolerance to injury manifested by the immature nephron.
Specific Aim 1 will evaluate the HSR by determining if down-regulation of either constitutive activation of Heat Shock Transcription Factor (HSF) or diminution of HSP72 and/or HSP25 expression will impair tolerance to injury in immature nephrons.
Specific Aim 2 will investigate HRP by delineating effects of inhibition of Hypoxia Inducible Factor (HIF-1) activity and synthesis of hemoxygenase and erythropoitin following hypoxic or ischemic insults in immature kidneys.
Both specific aims will test a common hypothesis: if tolerance of the immature nephron is dependent on the activity of transcription factors and/or abundance of proteins which are constitutively over-expressed compared to the mature kidney, then dampening of transcription factor activity and/or inhibition of synthesis of specific proteins will increase the vulnerability of the immature nephron to a hypoxic or ischemic injury. The proposed studies utilize new techniques for gene silencing which allow a) global dampening of families of genes controlled by a common transcription factor (oligonucleotide decoys) and b) specific inhibition of synthesis of selected proteins (short interference RNA, siRNA). To ensure the feasibility of the experimental design, transcription factor decoys for HSF and HIF-1 have been developed and validated in LLCPK cells, as well as suspensions and cultures of immature proximal tubules. In addition, two target sequences for HSP72 siRNA have been identified and shown to specifically inhibit synthesis of HSP72 but not HSP25 in LLCPK cells after ATP depletion. The developing kidney, in which cytoprotective proteins are up-regulated without prior stress, represents an ideal and somewhat unique circumstance in which to delineate molecular mechanisms and pathobiologic processes which are fundamental to cellular injury in the mature kidney. Moreover, an in-depth understanding in the immature kidney will be important so that therapeutic interventions which might offset the protective effects can be avoided in care of infants with acute renal failure.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD032573-14
Application #
7659694
Study Section
Special Emphasis Panel (ZHD1)
Project Start
2008-08-01
Project End
2010-07-31
Budget Start
2008-08-01
Budget End
2009-07-31
Support Year
14
Fiscal Year
2008
Total Cost
$255,182
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Azad, Priti; Zhao, Huiwen W; Cabrales, Pedro J et al. (2016) Senp1 drives hypoxia-induced polycythemia via GATA1 and Bcl-xL in subjects with Monge's disease. J Exp Med 213:2729-2744
Yao, Hang; Azad, Priti; Zhao, Huiwen W et al. (2016) The Na+/HCO3- co-transporter is protective during ischemia in astrocytes. Neuroscience 339:329-337
Jha, Aashish R; Zhou, Dan; Brown, Christopher D et al. (2016) Shared Genetic Signals of Hypoxia Adaptation in Drosophila and in High-Altitude Human Populations. Mol Biol Evol 33:501-17
Pamenter, Matthew E; Haddad, Gabriel G (2015) High-throughput cell death assays. Methods Mol Biol 1254:153-63
Gu, Xiang Q; Pamenter, Matthew E; Siemen, Detlef et al. (2014) Mitochondrial but not plasmalemmal BK channels are hypoxia-sensitive in human glioma. Glia 62:504-13
Gersten, Merril; Zhou, Dan; Azad, Priti et al. (2014) Wnt pathway activation increases hypoxia tolerance during development. PLoS One 9:e103292
Udpa, Nitin; Ronen, Roy; Zhou, Dan et al. (2014) Whole genome sequencing of Ethiopian highlanders reveals conserved hypoxia tolerance genes. Genome Biol 15:R36
Salameh, Ahlam Ibrahim; Ruffin, Vernon A; Boron, Walter F (2014) Effects of metabolic acidosis on intracellular pH responses in multiple cell types. Am J Physiol Regul Integr Comp Physiol 307:R1413-27
Douglas, Robert M; Chen, Alice H; Iniguez, Alejandra et al. (2013) Chemokine receptor-like 2 is involved in ischemic brain injury. J Exp Stroke Transl Med 6:1-6
Parker, Mark D; Boron, Walter F (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93:803-959

Showing the most recent 10 out of 173 publications