This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Serine/threonine phosphatase 5 (PP5) is an enzyme that has an under appreciated role in the regulation of signal transduction and altered PP5 activity appears to contribute to tumor development and maintenance. While protein kinase enzymes catalyze the transfer of a phosphate group from a donor to an acceptor protein in various signaling pathways, protein phosphatases, in turn, reverse the action of kinases by removing a phosphate. This removal may activate or inactivate the acceptor protein. Both genetic studies and studies using inhibitors of protein phosphatases (e.g. okadaic acid) indicate protein phosphatases play an important role(s) in the regulation of cell cycle progression and related processes implicated in tumor promotion. The endogenous expression of PP5 is responsive to 17-beta estradiol and hypoxia inducible factor-1 (HIF1) which are both positive factors in the development of human breast cancer. Consequently, the constitutive over expression of PP5 converts MCF-7 breast cancer cells from an estrogen-dependent (standard state) into an estrogen-independent phenotype (increased malignancy potential). Thus, altered PP5 activity may contribute to tumor development. Studies in progress indicate that over expression of PP5 via an expression plasmid in human tissue culture cells also promotes survival during oxidative stress (low oxygen state common to tumors regulated in part by HIF1). To continue these studies we are constructing PP5 expression plasmids with altered catalytic domains to test the hypothesis that PP5 has a role in the regulation of hypoxic stress, and that changes in the normal biological functions of PP5 may contribute to the development of cancer.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
2P20RR016478-09
Application #
7960034
Study Section
Special Emphasis Panel (ZRR1-RI-4 (01))
Project Start
2009-05-01
Project End
2010-03-31
Budget Start
2009-05-01
Budget End
2010-03-31
Support Year
9
Fiscal Year
2009
Total Cost
$30,506
Indirect Cost
Name
University of Oklahoma Health Sciences Center
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Hu, Zihua; Jiang, Kaiyu; Frank, Mark Barton et al. (2018) Modeling Transcriptional Rewiring in Neutrophils Through the Course of Treated Juvenile Idiopathic Arthritis. Sci Rep 8:7805
Wetherill, Marianna S; Williams, Mary B; Gray, Karen A (2017) SNAP-Based Incentive Programs at Farmers' Markets: Adaptation Considerations for Temporary Assistance for Needy Families (TANF) Recipients. J Nutr Educ Behav 49:743-751.e1
Wilson, Kevin R; Cannon-Smith, Desiray J; Burke, Benjamin P et al. (2016) Synthesis and structural studies of two pyridine-armed reinforced cyclen chelators and their transition metal complexes. Polyhedron 114:118-127
Trigoso, Yvonne D; Evans, Russell C; Karsten, William E et al. (2016) Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase. PLoS One 11:e0146525
Khandaker, Morshed; Riahinezhad, Shahram; Sultana, Fariha et al. (2016) Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement. Int J Nanomedicine 11:585-94
Hu, Zihua; Jiang, Kaiyu; Frank, Mark Barton et al. (2016) Complexity and Specificity of the Neutrophil Transcriptomes in Juvenile Idiopathic Arthritis. Sci Rep 6:27453
Hannafon, Bethany N; Trigoso, Yvonne D; Calloway, Cameron L et al. (2016) Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res 18:90
Matz, Dallas L; Jones, Donald G; Roewe, Kimberly D et al. (2015) Synthesis, structural studies, kinetic stability, and oxidation catalysis of the late first row transition metal complexes of 4,10-dimethyl-1,4,7,10-tetraazabicyclo[6.5.2]pentadecane. Dalton Trans 44:12210-24
Zhang, Shuyu; Xue, Jing; Zheng, Jie et al. (2015) The superoxide dismutase 1 3'UTR maintains high expression of the SOD1 gene in cancer cells: The involvement of the RNA-binding protein AUF-1. Free Radic Biol Med 85:33-44
Wang, Shuai; Hannafon, Bethany N; Lind, Stuart E et al. (2015) Zinc Protoporphyrin Suppresses ?-Catenin Protein Expression in Human Cancer Cells: The Potential Involvement of Lysosome-Mediated Degradation. PLoS One 10:e0127413

Showing the most recent 10 out of 165 publications