This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Our overall goal is to define the microbial populations found in the cystic fibrosis (CF) lung using """"""""deep sequencing"""""""" methodologies. The chronic bacterial infections associated with the CF lung contribute to the long-term damage to the lungs of these patients, resulting in respiratory failure. While Pseudomonas aeruginosa and Staphylococcus aureus are the primary pathogens in the CF lung, there is evidence emerging that additional pathogens can contribute to disease outcome, and furthermore, microbial populations may shift upon exacerbation of infection and subsequent treatment of the exacerbations. These exacerbations lead to progress loss of lung function, and eventually to the death of CF patients due to respiratory failure. Detailed studies of shifts in microbial populations over the course of stable infection, exacerbations and post-treatment regimens have not been assessed. Thus, our central hypothesis is that important bacterial pathogens responsible for causing reduction of lung function in CF patients have not yet been identified. A better understanding of the microbial populations under these varied conditions may help facilitate treatment of these chronic infections in the CF lung. In this study, we aim to analyze the bacterial populations within expectorated sputum from patients with stable infections, as well as patients undergoing exacerbations before and after antibiotic therapy. This study represents a collaboration between Drs. George O'Toole, Bruce Stanton, Deborah Hogan (Dartmouth Medical School) and Dr. Worth Parker and colleagues (DHMC). The 454 sequencing will be performed by Dr. Mitch Sogin at WHOI using bacterial DNA prepared at Dartmouth.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR018787-08
Application #
8167474
Study Section
Special Emphasis Panel (ZRR1-RI-6 (01))
Project Start
2010-05-01
Project End
2011-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
8
Fiscal Year
2010
Total Cost
$75,899
Indirect Cost
Name
Dartmouth College
Department
Physiology
Type
Schools of Medicine
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Ferreiro-Iglesias, Aida; Lesseur, Corina; McKay, James et al. (2018) Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity. Nat Commun 9:3927
Ji, Xuemei; Bossé, Yohan; Landi, Maria Teresa et al. (2018) Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun 9:3221
Demidenko, Eugene; Glaholt, S P; Kyker-Snowman, E et al. (2017) Single toxin dose-response models revisited. Toxicol Appl Pharmacol 314:12-23
Ben Khedher, Soumaya; Neri, Monica; Papadopoulos, Alexandra et al. (2017) Menstrual and reproductive factors and lung cancer risk: A pooled analysis from the international lung cancer consortium. Int J Cancer 141:309-323
Fehringer, Gordon; Brenner, Darren R; Zhang, Zuo-Feng et al. (2017) Alcohol and lung cancer risk among never smokers: A pooled analysis from the international lung cancer consortium and the SYNERGY study. Int J Cancer 140:1976-1984
Madan, Juliette C (2016) Neonatal Gastrointestinal and Respiratory Microbiome in Cystic Fibrosis: Potential Interactions and Implications for Systemic Health. Clin Ther 38:740-6
Chen, Li-Shiun; Baker, Timothy; Hung, Rayjean J et al. (2016) Genetic Risk Can Be Decreased: Quitting Smoking Decreases and Delays Lung Cancer for Smokers With High and Low CHRNA5 Risk Genotypes - A Meta-Analysis. EBioMedicine 11:219-226
Hammond, John H; Hebert, Wesley P; Naimie, Amanda et al. (2016) Environmentally Endemic Pseudomonas aeruginosa Strains with Mutations in lasR Are Associated with Increased Disease Severity in Corneal Ulcers. mSphere 1:
Chen, Li-Shiun; Hung, Rayjean J; Baker, Timothy et al. (2015) CHRNA5 risk variant predicts delayed smoking cessation and earlier lung cancer diagnosis--a meta-analysis. J Natl Cancer Inst 107:
Andrew, Angeline S; Marsit, Carmen J; Schned, Alan R et al. (2015) Expression of tumor suppressive microRNA-34a is associated with a reduced risk of bladder cancer recurrence. Int J Cancer 137:1158-66

Showing the most recent 10 out of 133 publications