The Genomic Profiling Shared Resource (GPSR) of the Dan L. Duncan Cancer Center (DLDCC) at Baylor College of Medicine (BCM) utilizes the expertise available at both BCM and Texas Children's Hospital (TCH) to offer a comprehensive suite of services using cutting edge genomic and transcriptomic technologies to DLDCC members. The GPSR core combines cutting edge technologies to provide state-of-the-art quality microarray-based and next generation sequencing-based services and analyses for both transcriptional and genomic profiling. This resource provides assistance to DLDCC researchers in utilizing microarray technology, next generation sequencing technology, good experimental design, and data management and data analysis resources. We will begin offering next generation sequencing technology (lllumina Genome Analyzer II) to DLDCC members in October 2009. Many DLDCC researchers are interested in utilizing state-of-the-art technologies such as microarray expression profiling to attempt to dissect the causes and effects associated with cancer. For individual laboratories, the costs and levels of expertise associated with establishing a microarray capability is prohibitive (initial equipment purchases can cost between $250,000 and $750,000) requiring a facility like the GPSR. Within the past decade we have witnessed significant advancements in research that are directly associated with the output of the genome sequencing endeavor. The results of these achievements provide hope to investigators researching complex disease including cancer. In cancer, complex barriers to the identification of cause include not only chromosomal abnormalities (gross and submicroscopic) but alterations in one or several genes having aberrant expression profiles or even hundreds to thousands of genes with perturbed expression. This can result in a mishmash of cancer gene expression profiles that is difficult to sort through presenting a challenge to researchers attempting to elucidate the cause and effect of cancer. The GPSR works to provide DLDCC members a solid base of expertise to tap in order to make sense of the large data sets generated with this technology.

Public Health Relevance

Cancer is a complex disease and researchers who endeavor to dissect the causes associated with cancer are now able to delve deeper than ever before utilizing tools that aid in the analyses of genomic and transcriptomic changes associated with a cancer state. This shared resource provides an avenue for these researchers to access both these cutting edge technologies and the expertise necessary to successfully use them.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA125123-04
Application #
8180982
Study Section
Subcommittee G - Education (NCI)
Project Start
2010-09-17
Project End
2015-06-30
Budget Start
2010-09-17
Budget End
2011-06-30
Support Year
4
Fiscal Year
2010
Total Cost
$165,765
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Takahashi, Hannah; Cornish, Alex J; Sud, Amit et al. (2018) Mendelian randomisation study of the relationship between vitamin D and risk of glioma. Sci Rep 8:2339
Arasaratnam, R J; Tzannou, I; Gray, T et al. (2018) Dynamics of virus-specific T cell immunity in pediatric liver transplant recipients. Am J Transplant 18:2238-2249
Zou, Winnie Y; Blutt, Sarah E; Zeng, Xi-Lei et al. (2018) Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation. Cell Rep 22:1003-1015
Kogiso, Mari; Qi, Lin; Braun, Frank K et al. (2018) Concurrent Inhibition of Neurosphere and Monolayer Cells of Pediatric Glioblastoma by Aurora A Inhibitor MLN8237 Predicted Survival Extension in PDOX Models. Clin Cancer Res 24:2159-2170
Hong, M J; Gu, B H; Madison, M C et al. (2018) Protective role of ?? T cells in cigarette smoke and influenza infection. Mucosal Immunol 11:894-908
Haller, Meade; Au, Jason; O'Neill, Marisol et al. (2018) 16p11.2 transcription factor MAZ is a dosage-sensitive regulator of genitourinary development. Proc Natl Acad Sci U S A 115:E1849-E1858
Heslop, Helen E; Brenner, Malcolm K (2018) Seek and You Will Not Find: Ending the Hunt for Replication-Competent Retroviruses during Human Gene Therapy. Mol Ther 26:1-2
Creighton, Chad J (2018) Making Use of Cancer Genomic Databases. Curr Protoc Mol Biol 121:19.14.1-19.14.13
Matsunuma, Ryoichi; Chan, Doug W; Kim, Beom-Jun et al. (2018) DPYSL3 modulates mitosis, migration, and epithelial-to-mesenchymal transition in claudin-low breast cancer. Proc Natl Acad Sci U S A 115:E11978-E11987
McClard, Cynthia K; Kochukov, Mikhail Y; Herman, Isabella et al. (2018) POU6f1 Mediates Neuropeptide-Dependent Plasticity in the Adult Brain. J Neurosci 38:1443-1461

Showing the most recent 10 out of 991 publications