Abstract: Antibiotic-resistant bacteria, such as vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA), are major causes of hospital-acquired infections and are driving forces of an escalating health crisis. We will help address the burgeoning antibiotic resistance problem by leveraging the power of bacterial genetics via unbiased genetic selections to: 1) comprehensively identify protein-protein interactions in cellular pathways that result in antibiotic resistance;and 2) discover small molecules that disable these protein-protein interactions. The proposed research will jointly exploit our expertise in the development of genetic strategies and our ongoing interest in elucidating the fundamental mechanisms of bacterial antibiotic resistance. By focusing on protein-protein interactions, this research promises to: 1) reveal new insights into the underlying biology of antibiotic resistance mechanisms and their integration into the physiological processes of the bacterial host;2) define new targets (in the form of protein-protein interactions) for innovative therapeutics to treat infections caused by drug-resistant pathogens;and 3) identify novel small-molecule drug candidates with unique modes of action. Our experimental design possesses critical strategic advantages. For example, our analyses will be done within the native context of the drug-resistant bacterial host (e.g., not by in vitro screens on isolated proteins), which will enable us to capture any potential, but as yet unknown, effects of dynamic cellular processes or post-translational modifications on key protein-protein interactions. Furthermore, we will employ powerful genetic selections capable of rapidly sifting through immense libraries to reveal even rare hits that, by definition, are functional in a physiological context. Collectively, these strategies will enable the discovery of unknown, unpredictable, and novel biological insights, not accessible by conventional means, that will be exploited to discover new candidate therapeutics with efficacy against drug-resistant bacterial infections. Public Health Relevance: Antibiotic-resistant bacteria, such as vancomycin-resistant enterococci (VRE) and methicillinresistant Staphylococcus aureus (MRSA), are major causes of hospital-acquired infections and are driving forces of an escalating health crisis. This research promises to: 1) reveal new insights into the underlying biology of antibiotic resistance mechanisms that will facilitate the development of new treatments for infections caused by drug-resistant pathogens;2) define new targets for these innovative therapeutics;and 3) identify novel small-molecule drug candidates with unique modes of action.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
NIH Director’s New Innovator Awards (DP2)
Project #
1DP2OD006447-01
Application #
7847398
Study Section
Special Emphasis Panel (ZGM1-NDIA-O (02))
Program Officer
Basavappa, Ravi
Project Start
2009-09-30
Project End
2014-06-30
Budget Start
2009-09-30
Budget End
2014-06-30
Support Year
1
Fiscal Year
2009
Total Cost
$2,280,000
Indirect Cost
Name
Medical College of Wisconsin
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Kellogg, Stephanie L; Kristich, Christopher J (2018) Convergence of PASTA kinase and two-component signaling in response to cell wall stress in Enterococcus faecalis. J Bacteriol :
Hall, Cherisse L; Lytle, Betsy L; Jensen, Davin et al. (2017) Structure and Dimerization of IreB, a Negative Regulator of Cephalosporin Resistance in Enterococcus faecalis. J Mol Biol 429:2324-2336
Kellogg, Stephanie L; Little, Jaime L; Hoff, Jessica S et al. (2017) Requirement of the CroRS Two-Component System for Resistance to Cell Wall-Targeting Antimicrobials in Enterococcus faecium. Antimicrob Agents Chemother 61:
Djori?, Dušanka; Kristich, Christopher J (2017) Extracellular SalB contributes to intrinsic cephalosporin resistance and cell envelope integrity in Enterococcus faecalis. J Bacteriol :
Labbe, Benjamin D; Kristich, Christopher J (2017) Growth- and Stress-Induced PASTA Kinase Phosphorylation in Enterococcus faecalis. J Bacteriol 199:
Kellogg, Stephanie L; Kristich, Christopher J (2016) Functional Dissection of the CroRS Two-Component System Required for Resistance to Cell Wall Stressors in Enterococcus faecalis. J Bacteriol 198:1326-36
Kommineni, Sushma; Bretl, Daniel J; Lam, Vy et al. (2015) Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526:719-22
Snyder, Holly; Kellogg, Stephanie L; Skarda, Laura M et al. (2014) Nutritional control of antibiotic resistance via an interface between the phosphotransferase system and a two-component signaling system. Antimicrob Agents Chemother 58:957-65
Kristich, Christopher J; Djori?, Dusanka; Little, Jaime L (2014) Genetic basis for vancomycin-enhanced cephalosporin susceptibility in vancomycin-resistant enterococci revealed using counterselection with dominant-negative thymidylate synthase. Antimicrob Agents Chemother 58:1556-64