High levels of plasma low-density lipoprotein (LDL) are correlated with an increased risk for cardiovascular disease (CVD). LDL is the smallest apolipoprotein-B containing lipoprotein (B-lp) and it accumulates modifications over time. These B-lp modifications may increase atherogenicity by increasing B-lp adherence to the vasculature and lowering their specificity to the LDL receptor (LDLR). However, the factors that control B-lp time in circulation, their turnover, remain to be fully defined. Current methods to study B-lp turnover rely on limited patient cohorts and require lipoprotein labeling, followed by complex mathematical modeling, that may skew the obtained data. A recent genome-wide association study (GWAS) underscores the importance to study LDL turnover. The GWAS reported lower risk for CVD, but only mildly reduced levels of LDL in individuals with a mutation in the asialoglycoprotein receptor 1 (ASGR1) gene. The reduction of LDL itself was not dramatic enough to account for the magnitude of the reduction in CVD risk. This proposal explores the hypothesis that ASGR1 modulates LDL turnover, a key understudied factor that may powerfully mediate CVD risk. I will use the optically clear zebrafish larva to obtain the first insight into general B-lp turnover in an in vivo, unperturbed context by developing multiple novel optical reporters. I generated and validated a tool to measure B-lp turnover by creating a zebrafish line that expresses the photoconvertible fluorescent protein Dendra2 fused to apolipoprotein B (ApoB). After photoconversion, Dendra2 fluoresces red and the subsequent loss of red fluorescence represents a readout of ApoB and thus B-lp turnover. I hypothesize that the general availability of lipids is a determinant of B-lp turnover and I will investigate this by genetic and dietary perturbations in zebrafish. To study the role of ASGR1 on B-lp metabolism, I identified the zebrafish ortholog of ASGR1 and created a mutant using CRISPR/Cas9. I found that the loss of ASGR1 in zebrafish does not change the total B-lp number or size. However, RNAseq analysis of ASGR1 mutants indicates that ASGR1 loss increases the expression of genes required for B-lp production and uptake. Together, these data are consistent with my hypothesis that the loss of ASGR1 increases B-lp turnover; I will directly test this by using the ApoB-Dendra2 reporter. Previous research suggests that ASGR1 binds LDLR and leads to endocytosis mediated degradation. Hence, I hypothesize that in the absence of ASGR1, LDLR escapes degradation and is more readily available. I will examine the interaction between ASGR1 and LDLR in the wild-type and ASGR1 mutants. The proposed experiments will not only generate a host of powerful new tools but will increase our understanding of B-lp regulation and provide me with exceptional training opportunities. While working on these studies, I will acquire hands-on experience with numerous ground-breaking techniques, while I expand my knowledge of lipid metabolism and CVD. Altogether, the synergy of world-renowned researchers and resources afforded by Johns Hopkins University and the Carnegie Institution create an outstanding environment to support the proposed studies and my Ph.D. training.

Public Health Relevance

While much is known about cardiovascular disease (CVD) and lipoproteins from clinical trials and rodent models, a detailed understanding of many steps in lipoprotein synthesis and metabolism, especially concerning lipoprotein turnover, remains obscure. Moreover, genetic modifications that reduce CVD risk and alter lipoprotein levels and turnover, like those identified in the human liver asialoglycoprotein receptor 1 (ASGR1), remain poorly understood. I created a lipoprotein-Dendra2 reporter to investigate lipoprotein turnover in general and in the context of an ASGR1 mutant zebrafish, as well as to examine the mechanism of action by which ASGR1 influences lipoprotein turnover.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
1F31HL149174-01A1
Application #
10066066
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Meadows, Tawanna
Project Start
2020-09-01
Project End
2024-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218