It is estimated that 1 in 4 Veterans suffer from diabetes, and, in the Veteran population, this is largely Type 2 diabetes. This condition drives heart disease, stroke, retinopathy, nephropathy and neuropathy, all of which are a cause of significant morbidity and mortality among our Veterans. As such, understanding the biology of diabetes, discovering novel molecules that regulate b-cell function and developing innovative therapeutic approaches will have a significant impact on the health of our aging veteran population. Type 2 diabetes is characterized by both a loss of insulin sensitivity and, ultimately, a relative loss of insulin-secretion from the pancreatic b-cell. Insulin secretion from the pancreatic b-cell is triggered by Ca2+ influx through voltage-gated Ca2+ channels (VGCC) to trigger insulin vesicle fusion with the b-cell plasma membrane. We recently reported that SWELL1 (LRRC8a), a member of the Leucine Rich Repeat Containing protein family, is required for ICl,SWELL in ?-cells. SWELL1-mediated ICl,SWELL activates upon b-cell swelling induced by glucose import, and this generates a depolarizing current contributing to VGCC activation, thereby regulating insulin secretion and systemic glycemia. Indeed, mice with SWELL1-deficient ?-cells exhibit impaired glucose- stimulated insulin secretion and glucose intolerance. Moreover, we find that ICl,SWELL is reduced in both mouse and humans in the context of Type 2 diabetes (T2D) indicating that reduced SWELL1 signaling is associated with impaired b-cell function in T2D. The objective of the current proposal is to delineate the mechanisms by which SWELL1 signaling regulates b-cell function, under basal conditions, and in the setting of Type 2 diabetes. Our central hypothesis is that SWELL1 regulates both glucose-stimulated insulin secretion and PI3K-AKT-mTOR signaling in b-cells to maintain systemic glycaemia, and that impaired SWELL1 signaling contributes to b-cell failure in Type 2 diabetes. The contribution of this proposal is significant because it explores the innovative concept the SWELL1 utilizes dual signaling domains (channel versus LRRD) to regulate b-cell function in health and T2D. Importantly, this proposal will also define the relationship between b-cell SWELL1 and T2D and test the notion that reduced SWELL1 signaling may drive impaired b-cell function in T2D. We propose the following two AIMs:
AIM#1 : Delineate the mechanism(s) of SWELL1-mediated regulation of excitation-secretion coupling.
AIM#2 : Dissect the molecular mechanisms of SWELL1 macro-complex regulation of AKT-mTOR signaling in b-cells. The contribution of this proposal is innovative because it delineates a novel SWELL1 signaling pathway that connects glucose-mediated b-cell swelling to b-cell depolarization and insulin-release - a form of b-cell swell- activation or ?swell-secretion? coupling. This proposal will enhance our understanding of b-cell biology and help direct novel therapeutic approaches to b-cell failure in Type 2 diabetes. !

Public Health Relevance

Diabetes and associated diseases are major health concerns in today?s society. The proposed research is relevant to the mission of the VA because it provides mechanistic and pathophysiological insight into a novel signaling pathway in pancreatic b-cells. Delineating this pathway will expand our knowledge base in b-cell biology and may provide an innovative therapeutic target for the treatment and prevention of diabetes which is prevalent in the VA population.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
1I01BX005072-01
Application #
10008268
Study Section
Special Emphasis Panel (ZRD1)
Project Start
2020-07-01
Project End
2024-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
St. Louis VA Medical Center
Department
Type
DUNS #
033986766
City
St. Louis
State
MO
Country
United States
Zip Code
63106