This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Background: Deficiencies in dihydropyrimidine dehydrogenase (DPD) and other enzymes of the pyrimidine catabolic pathway is critical in the predisposition to severe, unanticipated 5-fluorouracil (5-FU) toxicity. Rationale: We, and others, have linked molecular defects in the DPYD gene (the gene that encodes the DPD enzyme) to reduced enzyme activity. This decreased enzyme activity has been shown by our laboratory and others to result in decreased 5-FU clearance and increased 5-FU exposure. Other investigators have reported similar observations with the other enzymes of the pyrimidine catabolic pathway. Specifically, life-threatening 5-FU toxicities have been observed in cancer patients with dihydropyrimidinase (DPYS) and beta-ureidopropionate (BUP) deficiencies. Study Objectives: The long-term objective of this research project is to better understand the genetic basis for severe, potentially life-threatening toxicity secondary to treatment with 5-Fluorouracil (5-FU). To accomplish this goal, we will a) continue to further characterize the pharmacogenetic syndrome of DPD deficiency and b) characterize DPYD and BUP deficiencies. To accomplish these goals we will continue to obtain and utilize biochemical and molecular data (e.g., enzyme activity, mRNA levels, and analysis for mutations in pyrimidine catabolic genes) from patients presenting with grade IV toxicity after 5-FU therapy. In particular, we will examine: 1) the role of additional transcriptional regulatory elements affecting DPYD gene expression including identification of a) transcription factor(s) that bind to regulatory elements I and II in the previously identified promoter, and b) additional potential regulatory regions in introns 1 and the 3'-untranslated region; 2)-Determine the role of the ubiquitin (Ub)-proteasome system in the regulation of DPD protein- a) determine DPD protein half-life for wild type and mutant DPD protein, and b) identify putative destabilizing element(s) of DPD protein; 3) Develop user-friendly diagnostic tests for DPD deficiency and other deficiencies of the pyrimidine catabolic pathway including a) phenotypic tests and b) genotypic tests; 4) the role of other factors which may contribute to severe 5-FU toxicity including a} altered gene expression of the 5-FU site of action - thymidylate synthase, b) altered gene expression of anabolic enzymes, e.g. uridine and thymidine phosphorylases and kinases and orotate phosphoribosyltransferase, and c) altered gene expression of other catabolic enzymes, e.g. dihydropyrimidinase and BUP. Utilization of GCRC Resources: The nursing and laboratory staff has been utilized to 1) perform blood collection from 5-FU toxic cancer patients (over 350 to date) 2) perform pharmacokinetic studies which examine pyrimidine catabolism in 5-FU toxic cancer patients (8 hours per patient; over 25 patients to date) 3) isolation of plasma by laboratory staff from 5-FU toxic cancer patients who have performed the pharmacokinetic study, 4) culturing and maintainence of fibroblasts from 5-FU toxic, DPD deficient, DPYS deficiency, and BUP deficient subjects/cancer patients. Study Population and Outcome: Successful progress on this research project should translate into improved care for patients receiving fluoropyrimidine drugs in the future.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
General Clinical Research Centers Program (M01)
Project #
5M01RR000032-46
Application #
7380418
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2006-03-01
Project End
2007-02-28
Budget Start
2006-03-01
Budget End
2007-02-28
Support Year
46
Fiscal Year
2006
Total Cost
$19,270
Indirect Cost
Name
University of Alabama Birmingham
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Yu, Alan S L; Shen, Chengli; Landsittel, Douglas P et al. (2018) Baseline total kidney volume and the rate of kidney growth are associated with chronic kidney disease progression in Autosomal Dominant Polycystic Kidney Disease. Kidney Int 93:691-699
Askie, Lisa M; Darlow, Brian A; Finer, Neil et al. (2018) Association Between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration. JAMA 319:2190-2201
McKenzie, Katelyn A; El Ters, Mirelle; Torres, Vicente E et al. (2018) Relationship between caffeine intake and autosomal dominant polycystic kidney disease progression: a retrospective analysis using the CRISP cohort. BMC Nephrol 19:378
Denson, Lee A; McDonald, Scott A; Das, Abhik et al. (2017) Early Elevation in Interleukin-6 is Associated with Reduced Growth in Extremely Low Birth Weight Infants. Am J Perinatol 34:240-247
Kline, Timothy L; Korfiatis, Panagiotis; Edwards, Marie E et al. (2017) Image texture features predict renal function decline in patients with autosomal dominant polycystic kidney disease. Kidney Int 92:1206-1216
James, Jennifer; Munson, David; DeMauro, Sara B et al. (2017) Outcomes of Preterm Infants following Discussions about Withdrawal or Withholding of Life Support. J Pediatr 190:118-123.e4
Younge, Noelle; Goldstein, Ricki F; Bann, Carla M et al. (2017) Survival and Neurodevelopmental Outcomes among Periviable Infants. N Engl J Med 376:617-628
Srinivasan, Lakshmi; Page, Grier; Kirpalani, Haresh et al. (2017) Genome-wide association study of sepsis in extremely premature infants. Arch Dis Child Fetal Neonatal Ed 102:F439-F445
Morrison, Shannon A; Goss, Amy M; Azziz, Ricardo et al. (2017) Peri-muscular adipose tissue may play a unique role in determining insulin sensitivity/resistance in women with polycystic ovary syndrome. Hum Reprod 32:185-192
Shen, Chengli; Landsittel, Douglas; Irazabal, María V et al. (2017) Performance of the CKD-EPI Equation to Estimate GFR in a Longitudinal Study of Autosomal Dominant Polycystic Kidney Disease. Am J Kidney Dis 69:482-484

Showing the most recent 10 out of 570 publications