This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.This study will attempt to identify the earliest predictors of memory and brain deterioration in preclinical Alzheimer's disease (AD) using FDG-PET. The hypothesis is that longitudinal reductions in glucose metabolism in the entorhinal cortex predict the onset of minimal cognitive impairment. Two groups of medically healthy elderly will be studied: one group will have evidence of memory decline. A third group will be normal healthy volunteers 20-30 years of age. For groups 1&2, clinical evaluations, a neuropsychological battery and Alzheimer's-associated cognitive deficits will be evaluated at baseline and at 36 months. PET and MRI will be performed at baseline and at 36 months to evaluate hippocampal pathology (MRI also at 18 months).Using this population, the following hypotheses will be tested: 1) Does enterorhinal cortex glucose metabolism predict decline in neuropsychological performance? 2) On the basis of observation of hyperglycemia-induced increase in glucose metabolism and memory in normal but not in AD, does decreased hippocampus glucose transport (evaluated under steady-state hyperglycemia and euglycemia) predict progressive brain deterioration? This study may help in the detection of subjects at risk for AD.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
General Clinical Research Centers Program (M01)
Project #
5M01RR000096-47
Application #
7718404
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2008-04-01
Project End
2009-03-31
Budget Start
2008-04-01
Budget End
2009-03-31
Support Year
47
Fiscal Year
2008
Total Cost
$2,166
Indirect Cost
Name
New York University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Jun, Gyungah R; Chung, Jaeyoon; Mez, Jesse et al. (2017) Transethnic genome-wide scan identifies novel Alzheimer's disease loci. Alzheimers Dement 13:727-738
Homann, O R; Misura, K; Lamas, E et al. (2016) Whole-genome sequencing in multiplex families with psychoses reveals mutations in the SHANK2 and SMARCA1 genes segregating with illness. Mol Psychiatry 21:1690-1695
Ridge, Perry G; Hoyt, Kaitlyn B; Boehme, Kevin et al. (2016) Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiol Aging 41:200.e13-200.e20
Hohman, Timothy J; Bush, William S; Jiang, Lan et al. (2016) Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium. Neurobiol Aging 38:141-150
Jun, G; Ibrahim-Verbaas, C A; Vronskaya, M et al. (2016) A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry 21:108-17
Ebbert, Mark T W; Boehme, Kevin L; Wadsworth, Mark E et al. (2016) Interaction between variants in CLU and MS4A4E modulates Alzheimer's disease risk. Alzheimers Dement 12:121-129
Hohman, Timothy J; Cooke-Bailey, Jessica N; Reitz, Christiane et al. (2016) Global and local ancestry in African-Americans: Implications for Alzheimer's disease risk. Alzheimers Dement 12:233-43
Li, Yi; Tsui, Wai; Rusinek, Henry et al. (2015) Cortical laminar binding of PET amyloid and tau tracers in Alzheimer disease. J Nucl Med 56:270-3
Ghani, Mahdi; Reitz, Christiane; Cheng, Rong et al. (2015) Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals. JAMA Neurol 72:1313-23
Beecham, Gary W; Dickson, Dennis W; Scott, William K et al. (2015) PARK10 is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology 84:972-80

Showing the most recent 10 out of 470 publications