The novel-response drug discrimination procedure is one of several three-choice procedures developed to address interpretational difficulties that can occur under standard two-response procedures. The novel-response procedure is unique among three-choice discrimination procedures by using instructions, rather than explicit training procedures. With the novel-response procedure, participants are trained under a standard two-response (drug versus placebo) discrimination, and then instructed that in the presence of a drug stimulus unlike either of the training drugs, responses should be made on the novel-response alternative. Several studies have assessed the utility of the novel-response procedure by comparing effects under a standard two-response and the novel-response procedure in participants trained to discriminate triazolam from placebo. Results indicate that the novel-response procedure can increase the selectivity of both placebo- and drug-appropriate responding, and in this way, allows for finer distinctions to be made among sedatives than a standard two-response procedure.

Project Start
1998-12-01
Project End
1999-11-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
35
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Vermont & St Agric College
Department
Type
DUNS #
066811191
City
Burlington
State
VT
Country
United States
Zip Code
05405
Scagnelli, Connor N; Howard, Diantha B; Bromberg, Mark B et al. (2018) Hydration measured by doubly labeled water in ALS and its effects on survival. Amyotroph Lateral Scler Frontotemporal Degener 19:220-231
Horne, Hisani N; Sherman, Mark E; Pfeiffer, Ruth M et al. (2016) Circulating insulin-like growth factor-I, insulin-like growth factor binding protein-3 and terminal duct lobular unit involution of the breast: a cross-sectional study of women with benign breast disease. Breast Cancer Res 18:24
Kien, C Lawrence; Matthews, Dwight E; Poynter, Matthew E et al. (2015) Increased palmitate intake: higher acylcarnitine concentrations without impaired progression of ?-oxidation. J Lipid Res 56:1795-807
Gierach, Gretchen L; Patel, Deesha A; Falk, Roni T et al. (2015) Relationship of serum estrogens and metabolites with area and volume mammographic densities. Horm Cancer 6:107-19
Albert, Kimberly; Pruessner, Jens; Newhouse, Paul (2015) Estradiol levels modulate brain activity and negative responses to psychosocial stress across the menstrual cycle. Psychoneuroendocrinology 59:14-24
Bodelon, Clara; Heaphy, Christopher M; Meeker, Alan K et al. (2015) Leukocyte telomere length and its association with mammographic density and proliferative diagnosis among women undergoing diagnostic image-guided breast biopsy. BMC Cancer 15:823
Morris, Erin A; Hale, Sarah A; Badger, Gary J et al. (2015) Pregnancy induces persistent changes in vascular compliance in primiparous women. Am J Obstet Gynecol 212:633.e1-6
Miller, Mark S; Bedrin, Nicholas G; Ades, Philip A et al. (2015) Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area. Am J Physiol Cell Physiol 308:C473-84
Kien, C Lawrence; Bunn, Janice Y; Fukagawa, Naomi K et al. (2015) Lipidomic evidence that lowering the typical dietary palmitate to oleate ratio in humans decreases the leukocyte production of proinflammatory cytokines and muscle expression of redox-sensitive genes. J Nutr Biochem 26:1599-606
Fox, James R; Gray, Weili; Koptiuch, Cathryn et al. (2014) Anisotropic tissue motion induced by acupuncture needling along intermuscular connective tissue planes. J Altern Complement Med 20:290-4

Showing the most recent 10 out of 94 publications