This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The purpose of this research study is to find out how blood sugar levels change during the day and night in people living with spinal cord injuries (SCI). As people with SCI get older they become more likely to develop health problems, just like everyone else. However, SCI increases the risk of certain problems. The amount of time post-SCI can also increase the risk of certain problems. This research project will focus on identifying the patterns of changes in blood sugar levels after SCI. Sugar in the blood is the important source of energy for the body. Too much sugar in the blood is known as hyperglycemia and not enough sugar in the blood is known as hypoglycemia. Under healthy conditions, the amount of sugar in the blood is automatically regulated so that a steady level is maintained. After SCI, however, this automatic regulation is damaged. The likelihood of experiencing too much or too little blood sugar is increased. Over time, having too much blood sugar can lead to the development of diabetes. In just the opposite situation, individuals with SCI can begin to experience more frequent episodes of too little blood sugar, which can lead to acute emergency situations.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
General Clinical Research Centers Program (M01)
Project #
5M01RR000827-34
Application #
7951061
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2008-12-01
Project End
2009-11-30
Budget Start
2008-12-01
Budget End
2009-11-30
Support Year
34
Fiscal Year
2009
Total Cost
$10,757
Indirect Cost
Name
University of California San Diego
Department
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Grams, Morgan E; Sang, Yingying; Ballew, Shoshana H et al. (2018) Predicting timing of clinical outcomes in patients with chronic kidney disease and severely decreased glomerular filtration rate. Kidney Int 93:1442-1451
Lavigne, Katie M; Woodward, Todd S (2018) Hallucination- and speech-specific hypercoupling in frontotemporal auditory and language networks in schizophrenia using combined task-based fMRI data: An fBIRN study. Hum Brain Mapp 39:1582-1595
Milot, Marie-Hélène; Marchal-Crespo, Laura; Beaulieu, Louis-David et al. (2018) Neural circuits activated by error amplification and haptic guidance training techniques during performance of a timing-based motor task by healthy individuals. Exp Brain Res 236:3085-3099
Hsu, Simon; Rifkin, Dena E; Criqui, Michael H et al. (2018) Relationship of femoral artery ultrasound measures of atherosclerosis with chronic kidney disease. J Vasc Surg 67:1855-1863.e1
Inker, Lesley A; Grams, Morgan E; Levey, Andrew S et al. (2018) Relationship of Estimated GFR and Albuminuria to Concurrent Laboratory Abnormalities: An Individual Participant Data Meta-analysis in a Global Consortium. Am J Kidney Dis :
Egnot, Natalie Suder; Barinas-Mitchell, Emma; Criqui, Michael H et al. (2018) An exploratory factor analysis of inflammatory and coagulation markers associated with femoral artery atherosclerosis in the San Diego Population Study. Thromb Res 164:9-14
Juraschek, Stephen P; Miller 3rd, Edgar R; Appel, Lawrence J (2018) Orthostatic Hypotension and Symptoms in the AASK Trial. Am J Hypertens 31:665-671
Chen, Teresa K; Appel, Lawrence J; Grams, Morgan E et al. (2017) APOL1 Risk Variants and Cardiovascular Disease: Results From the AASK (African American Study of Kidney Disease and Hypertension). Arterioscler Thromb Vasc Biol 37:1765-1769
Juraschek, Stephen P; Appel, Lawrence J; Miller 3rd, Edgar R (2017) Metoprolol Increases Uric Acid and Risk of Gout in African Americans With Chronic Kidney Disease Attributed to Hypertension. Am J Hypertens 30:871-875
Chen, Teresa K; Tin, Adrienne; Peralta, Carmen A et al. (2017) APOL1 Risk Variants, Incident Proteinuria, and Subsequent eGFR Decline in Blacks with Hypertension-Attributed CKD. Clin J Am Soc Nephrol 12:1771-1777

Showing the most recent 10 out of 1825 publications