It is almost certain that the reinforcing effects of ethanol arise from a summation of its effects on a number of protein targets, likely including neurotransmitter receptors and ion channels. It would be highly beneficial for the treatment of alcoholism if these positively reinforcing effects of alcohol could be antagonized by chemical means and if novel anti-alcoholism compounds could be identified and developed rationally. Until recently, however, medication development for the treatment of alcoholism has largely occurred serendipitously. Rather than continuing to rely on serendipity for the discovery of new compounds to combat alcoholism it seems logical rather to attempt reasoned approaches in the identification of compounds that affect the functioning of protein targets that are believed (or that at least could) play roles in the reinforcing effects of ethanol. The research proposed in this P01 project application will use phage display to identify peptides that selectively interact with specific heteromeric ?/? glycine receptors. These peptides will be assayed functionally on glycine receptors expressed in Xenopus oocytes and the most promising will also be studied for their effects on dopamine cell firing in ventral tegmental area slices. They will also be tested for their effects on alcohol consumption and preference by the Behavioral Core. Based on the many different small molecules that are known to affect the functioning of receptors and ion channels (egs., polyamines, metals and benzodiazepines) there is a strong rationale to support the idea that specific peptides can be identified that could affect the functioning of specific glycine receptor subtypes. The glycine receptor was chosen as our initial molecular target because it fulfills all of the following criteria that we consider important for protein targets of potential interest: (1) it is a protein for which a substantial amount of evidence has been accumulated regarding its importance for alcohol actions in vivo;(2) it exhibits considerable sensitivity to the effects of alcohol when assayed in vitro;(3) we have expertise in the study of its function electrophysiologically, and (4) we have obtained considerable preliminary data validating our experimental approach in identifying novel specific allosteric modulators at the glycine receptor.

Public Health Relevance

It is the purpose of this project to identify novel molecules that can affect the functioning of cell-surface proteins thought to be significant mediators of the effects of ethanol in vivo. The ultimate goal is the eventual development of compounds that can antagonize the reinforcing properties of alcohol, thus decreasing ethanol consumption in alcoholics. This rational approach to drug discovery contrasts markedly with the serendipitous approach to the discovery of drugs currently used in the treatment of alcoholism.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Research Program Projects (P01)
Project #
5P01AA020683-03
Application #
8663145
Study Section
Special Emphasis Panel (ZAA1)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Texas Austin
Department
Type
DUNS #
City
Austin
State
TX
Country
United States
Zip Code
78712
Scott, Luisa L; Iyer, Sangeetha; Philpo, Ashley E et al. (2018) A Novel Peptide Restricts Ethanol Modulation of the BK Channel In Vitro and In Vivo. J Pharmacol Exp Ther 367:282-290
Most, Dana; Salem, Nihal A; Tiwari, Gayatri R et al. (2018) Silencing synaptic MicroRNA-411 reduces voluntary alcohol consumption in mice. Addict Biol :
McCarthy, Gizelle M; Warden, Anna S; Bridges, Courtney R et al. (2018) Chronic ethanol consumption: role of TLR3/TRIF-dependent signaling. Addict Biol 23:889-903
Ferguson, Laura B; Zhang, Lingling; Kircher, Daniel et al. (2018) Dissecting Brain Networks Underlying Alcohol Binge Drinking Using a Systems Genomics Approach. Mol Neurobiol :
Mayfield, R Dayne (2017) Emerging roles for ncRNAs in alcohol use disorders. Alcohol 60:31-39
Scott, L L; Brecht, E J; Philpo, A et al. (2017) A novel BK channel-targeted peptide suppresses sound evoked activity in the mouse inferior colliculus. Sci Rep 7:42433
Tulisiak, Christopher T; Harris, R Adron; Ponomarev, Igor (2017) DNA modifications in models of alcohol use disorders. Alcohol 60:19-30
Harris, R Adron; Bajo, Michal; Bell, Richard L et al. (2017) Genetic and Pharmacologic Manipulation of TLR4 Has Minimal Impact on Ethanol Consumption in Rodents. J Neurosci 37:1139-1155
Cornelison, Garrett L; Daszkowski, Anna W; Pflanz, Natasha C et al. (2017) Interactions between Zinc and Allosteric Modulators of the Glycine Receptor. J Pharmacol Exp Ther 361:1-8
Ponomarev, Igor; Stelly, Claire E; Morikawa, Hitoshi et al. (2017) Mechanistic insights into epigenetic modulation of ethanol consumption. Alcohol 60:95-101

Showing the most recent 10 out of 28 publications